2015, 35(9): 4041-4070. doi: 10.3934/dcds.2015.35.4041

Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations

1. 

Laboratoire Jacques-Louis Lions, UMR 7598, Université Paris-Diderot (Paris 7), UFR de Mathématiques - 5 rue Thomas Mann, 75205 Paris CEDEX 13

2. 

Dipartimento di Matematica, Istituto "Guido Castelnuovo", Sapienza Università di Roma, Piazzale Aldo Moro, 2 I-00185 Roma

3. 

Dipartimento di Matematica e Fisica, Università di Roma Tre, L.go S. Leonardo Murialdo, 1, 00146 Roma, Italy

4. 

Mathematisches Institut, Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, 95440 Bayreuth, Germany

5. 

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz, Austria

6. 

Unité des mathématiques appliquées (UMA), ENSTA ParisTech, 828 Bd Maréchaux, 91120 Palaiseau

Received  April 2014 Published  April 2015

We present an abstract convergence result for the fixed point approximation of stationary Hamilton--Jacobi equations. The basic assumptions on the discrete operator are invariance with respect to the addition of constants, $\epsilon$-monotonicity and consistency. The result can be applied to various high-order approximation schemes which are illustrated in the paper. Several applications to Hamilton--Jacobi equations and numerical tests are presented.
Citation: Olivier Bokanowski, Maurizio Falcone, Roberto Ferretti, Lars Grüne, Dante Kalise, Hasnaa Zidani. Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4041-4070. doi: 10.3934/dcds.2015.35.4041
References:
[1]

R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes,, Comm. Pure Appl. Math., 49 (1996), 1339. doi: 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B.

[2]

R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 2233. doi: 10.1137/S0036142998345980.

[3]

S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes,, J. Sci. Comput., 15 (2000), 197. doi: 10.1023/A:1007633810484.

[4]

D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics,, J. Comput. Phys., 228 (2009), 2480. doi: 10.1016/j.jcp.2008.12.003.

[5]

M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Birkhäuser, (1997). doi: 10.1007/978-0-8176-4755-1.

[6]

G. Barles, Solutions de Viscositè des Equations d'Hamilton-Jacobi,, Springer-Verlag, (1998).

[7]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.

[8]

F. Bauer, L. Grüne and W. Semmler, Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations,, Appl. Numer. Math., 56 (2006), 1196. doi: 10.1016/j.apnum.2006.03.011.

[9]

O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems,, J. Sci. Comput., 42 (2010), 251. doi: 10.1007/s10915-009-9329-6.

[10]

O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations,, J. Sci. Comput., 55 (2013), 575. doi: 10.1007/s10915-012-9648-x.

[11]

O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data,, Numer. Math., 115 (2010), 1. doi: 10.1007/s00211-009-0271-1.

[12]

O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations,, J. Sci. Comput., 30 (2007), 1. doi: 10.1007/s10915-005-9017-0.

[13]

S. Bryson, A. Kurganov, D. Levy and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations,, IMA J. Numer. Anal., 25 (2005), 113. doi: 10.1093/imanum/drh015.

[14]

S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 1339. doi: 10.1137/S0036142902408404.

[15]

S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations,, Appl. Numer. Math., 56 (2006), 1211. doi: 10.1016/j.apnum.2006.03.005.

[16]

F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed system,, SIAM J. Control Optim., 40 (2001), 496. doi: 10.1137/S036301299936316X.

[17]

I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161. doi: 10.1007/BF01442176.

[18]

E. Carlini, M. Falcone, and R. Ferretti., An efficient algorithm for Hamilton-Jacobi equations in high dimension,, Comput. Vis. Sci., 7 (2004), 15. doi: 10.1007/s00791-004-0124-5.

[19]

E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 27 (2005), 1071. doi: 10.1137/040608787.

[20]

F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach,, Math. Comp., 57 (1991), 169. doi: 10.1090/S0025-5718-1991-1079010-2.

[21]

F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory,, SIAM J. Numer. Anal., 30 (1993), 675. doi: 10.1137/0730033.

[22]

L. Corrias, M. Falcone and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations,, Math. Comp., 64 (1995), 555. doi: 10.1090/S0025-5718-1995-1265013-5.

[23]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Math. Comp., 43 (1984), 1. doi: 10.1090/S0025-5718-1984-0744921-8.

[24]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. Amer. Math. Soc., 78 (1980), 385. doi: 10.1090/S0002-9939-1980-0553381-X.

[25]

M. Falcone, Numerical methods for differential games via PDEs,, Int. Game Theor. Rev., 8 (2006), 231. doi: 10.1142/S0219198906000886.

[26]

M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations,, Numer. Math., 67 (1994), 315. doi: 10.1007/s002110050031.

[27]

M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods,, J. Comp. Phys., 175 (2002), 559. doi: 10.1006/jcph.2001.6954.

[28]

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014). doi: 10.1137/1.9781611973051.

[29]

R. Ferretti, Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers,, SIAM J. Numer. Anal., 40 (2002), 2240. doi: 10.1137/S0036142901388378.

[30]

B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation,, SIAM J. Numer. Anal., 51 (2013), 423. doi: 10.1137/120875065.

[31]

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences,, Springer-Verlag, (1996). doi: 10.1007/978-1-4612-0713-9.

[32]

L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319. doi: 10.1007/s002110050241.

[33]

L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming,, J. Econ. Behav. Organ., 57 (2005), 448. doi: 10.1016/j.jebo.2005.04.002.

[34]

A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III,, J. Comput. Phys., 71 (1987), 231. doi: 10.1016/0021-9991(87)90031-3.

[35]

A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I,, SIAM J. Numer. Anal., 24 (1987), 279. doi: 10.1137/0724022.

[36]

A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes,, Appl. Numer. Math., 2 (1986), 347. doi: 10.1016/0168-9274(86)90039-5.

[37]

P. Hoch and O. Pironneau, A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows,, C. R. Math. Acad. Sci. Paris, 342 (2006), 151. doi: 10.1016/j.crma.2005.11.007.

[38]

C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 21 (1999), 666. doi: 10.1137/S1064827598337282.

[39]

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,, J. Comput. Phys., 126 (1996), 202. doi: 10.1006/jcph.1996.0130.

[40]

F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations,, Appl. Math. Lett., 18 (2005), 1204. doi: 10.1016/j.aml.2004.10.009.

[41]

P. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations,, Num. Math., 69 (1995), 441. doi: 10.1007/s002110050102.

[42]

X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes,, J. Comput. Phys., 115 (1994), 200. doi: 10.1006/jcph.1994.1187.

[43]

S. Osher, Convergence of generalized MUSCL schemes,, SIAM J. Numer. Anal., 22 (1985), 947. doi: 10.1137/0722057.

[44]

B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method,, J. Comput. Phys., 135 (1997), 227. doi: 10.1006/jcph.1997.5757.

[45]

Y.-T. Zhang and C.-W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes,, SIAM J. Sci. Comput., 24 (2002), 1005. doi: 10.1137/S1064827501396798.

show all references

References:
[1]

R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes,, Comm. Pure Appl. Math., 49 (1996), 1339. doi: 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B.

[2]

R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 2233. doi: 10.1137/S0036142998345980.

[3]

S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes,, J. Sci. Comput., 15 (2000), 197. doi: 10.1023/A:1007633810484.

[4]

D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics,, J. Comput. Phys., 228 (2009), 2480. doi: 10.1016/j.jcp.2008.12.003.

[5]

M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Birkhäuser, (1997). doi: 10.1007/978-0-8176-4755-1.

[6]

G. Barles, Solutions de Viscositè des Equations d'Hamilton-Jacobi,, Springer-Verlag, (1998).

[7]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.

[8]

F. Bauer, L. Grüne and W. Semmler, Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations,, Appl. Numer. Math., 56 (2006), 1196. doi: 10.1016/j.apnum.2006.03.011.

[9]

O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems,, J. Sci. Comput., 42 (2010), 251. doi: 10.1007/s10915-009-9329-6.

[10]

O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations,, J. Sci. Comput., 55 (2013), 575. doi: 10.1007/s10915-012-9648-x.

[11]

O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data,, Numer. Math., 115 (2010), 1. doi: 10.1007/s00211-009-0271-1.

[12]

O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations,, J. Sci. Comput., 30 (2007), 1. doi: 10.1007/s10915-005-9017-0.

[13]

S. Bryson, A. Kurganov, D. Levy and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations,, IMA J. Numer. Anal., 25 (2005), 113. doi: 10.1093/imanum/drh015.

[14]

S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 1339. doi: 10.1137/S0036142902408404.

[15]

S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations,, Appl. Numer. Math., 56 (2006), 1211. doi: 10.1016/j.apnum.2006.03.005.

[16]

F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed system,, SIAM J. Control Optim., 40 (2001), 496. doi: 10.1137/S036301299936316X.

[17]

I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161. doi: 10.1007/BF01442176.

[18]

E. Carlini, M. Falcone, and R. Ferretti., An efficient algorithm for Hamilton-Jacobi equations in high dimension,, Comput. Vis. Sci., 7 (2004), 15. doi: 10.1007/s00791-004-0124-5.

[19]

E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 27 (2005), 1071. doi: 10.1137/040608787.

[20]

F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach,, Math. Comp., 57 (1991), 169. doi: 10.1090/S0025-5718-1991-1079010-2.

[21]

F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory,, SIAM J. Numer. Anal., 30 (1993), 675. doi: 10.1137/0730033.

[22]

L. Corrias, M. Falcone and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations,, Math. Comp., 64 (1995), 555. doi: 10.1090/S0025-5718-1995-1265013-5.

[23]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Math. Comp., 43 (1984), 1. doi: 10.1090/S0025-5718-1984-0744921-8.

[24]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. Amer. Math. Soc., 78 (1980), 385. doi: 10.1090/S0002-9939-1980-0553381-X.

[25]

M. Falcone, Numerical methods for differential games via PDEs,, Int. Game Theor. Rev., 8 (2006), 231. doi: 10.1142/S0219198906000886.

[26]

M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations,, Numer. Math., 67 (1994), 315. doi: 10.1007/s002110050031.

[27]

M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods,, J. Comp. Phys., 175 (2002), 559. doi: 10.1006/jcph.2001.6954.

[28]

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014). doi: 10.1137/1.9781611973051.

[29]

R. Ferretti, Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers,, SIAM J. Numer. Anal., 40 (2002), 2240. doi: 10.1137/S0036142901388378.

[30]

B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation,, SIAM J. Numer. Anal., 51 (2013), 423. doi: 10.1137/120875065.

[31]

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences,, Springer-Verlag, (1996). doi: 10.1007/978-1-4612-0713-9.

[32]

L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319. doi: 10.1007/s002110050241.

[33]

L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming,, J. Econ. Behav. Organ., 57 (2005), 448. doi: 10.1016/j.jebo.2005.04.002.

[34]

A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III,, J. Comput. Phys., 71 (1987), 231. doi: 10.1016/0021-9991(87)90031-3.

[35]

A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I,, SIAM J. Numer. Anal., 24 (1987), 279. doi: 10.1137/0724022.

[36]

A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes,, Appl. Numer. Math., 2 (1986), 347. doi: 10.1016/0168-9274(86)90039-5.

[37]

P. Hoch and O. Pironneau, A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows,, C. R. Math. Acad. Sci. Paris, 342 (2006), 151. doi: 10.1016/j.crma.2005.11.007.

[38]

C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 21 (1999), 666. doi: 10.1137/S1064827598337282.

[39]

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,, J. Comput. Phys., 126 (1996), 202. doi: 10.1006/jcph.1996.0130.

[40]

F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations,, Appl. Math. Lett., 18 (2005), 1204. doi: 10.1016/j.aml.2004.10.009.

[41]

P. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations,, Num. Math., 69 (1995), 441. doi: 10.1007/s002110050102.

[42]

X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes,, J. Comput. Phys., 115 (1994), 200. doi: 10.1006/jcph.1994.1187.

[43]

S. Osher, Convergence of generalized MUSCL schemes,, SIAM J. Numer. Anal., 22 (1985), 947. doi: 10.1137/0722057.

[44]

B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method,, J. Comput. Phys., 135 (1997), 227. doi: 10.1006/jcph.1997.5757.

[45]

Y.-T. Zhang and C.-W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes,, SIAM J. Sci. Comput., 24 (2002), 1005. doi: 10.1137/S1064827501396798.

[1]

Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 685-705. doi: 10.3934/nhm.2013.8.685

[2]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[3]

Thomas Strömberg. A system of the Hamilton--Jacobi and the continuity equations in the vanishing viscosity limit. Communications on Pure & Applied Analysis, 2011, 10 (2) : 479-506. doi: 10.3934/cpaa.2011.10.479

[4]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[5]

Yves Achdou, Fabio Camilli, Lucilla Corrias. On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 629-650. doi: 10.3934/dcdsb.2014.19.629

[6]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[7]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[8]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[9]

Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024

[10]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[11]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[12]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[13]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[14]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[15]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[16]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[17]

Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977

[18]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[19]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[20]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

[Back to Top]