September  2015, 35(9): 4241-4268. doi: 10.3934/dcds.2015.35.4241

A nonlinear model of opinion formation on the sphere

1. 

Équipe M2N - EA 7340, Conservatoire National des Arts et Métiers, Paris, France

2. 

Dipartimento di Matematica e Fisica, Università degli studi di Roma Tre, Rome, Italy

3. 

Department of Mathematical Sciences & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ

Received  June 2014 Revised  October 2014 Published  April 2015

In this paper we present a model for opinion dynamics on the $d$-dimensional sphere based on classical consensus algorithms. The choice of the model is motivated by the analysis of the comprehensive literature on the subject, both from the mathematical and the sociological point of views. The resulting dynamics is highly nonlinear and therefore presents a rich structure. Equilibria and asymptotic behavior are then analysed and sufficient condition for consensus are established. Finally we address global stabilization and controllability.
Citation: Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241
References:
[1]

L. Behera and F. Schweitzer, On spatial consensus formation: Is the sznajd model different from a voter model?,, International Journal of Modern Physics C, 14 (2003), 1331. doi: 10.1142/S0129183103005467. Google Scholar

[2]

V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications,, SIAM Journal on Control and Optimization, 48 (2010), 5214. doi: 10.1137/090766188. Google Scholar

[3]

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents,, Advances in Complex Systems, 3 (2000), 87. doi: 10.1142/S0219525900000078. Google Scholar

[4]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, Journal of Artificial Societies and Social Simulation, 5 (). Google Scholar

[5]

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities,, Proceedings of the national academy of sciences, 79 (1982), 2554. doi: 10.1073/pnas.79.8.2554. Google Scholar

[6]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules,, Automatic Control, 48 (2003), 988. doi: 10.1109/TAC.2003.812781. Google Scholar

[7]

Y. Kuramoto, Cooperative dynamics of oscillator community a study based on lattice of rings,, Progress of Theoretical Physics Supplement, 79 (1984), 223. doi: 10.1143/PTPS.79.223. Google Scholar

[8]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819. doi: 10.1142/S0129183107011789. Google Scholar

[9]

L. Moreau, Stability of continuous-time distributed consensus algorithms,, in Decision and Control, (2004), 3998. doi: 10.1109/CDC.2004.1429377. Google Scholar

[10]

L. Moreau, Stability of multiagent systems with time-dependent communication links,, Automatic Control, 50 (2005), 169. doi: 10.1109/TAC.2004.841888. Google Scholar

[11]

M. C. Nisbet, The competition for worldviews: Values, information, and public support for stem cell research,, International Journal of Public Opinion Research, 17 (2005), 90. doi: 10.1093/ijpor/edh058. Google Scholar

[12]

H. Norpohth, M. S. L. Beck and J. D. Lafay, Economics and Politics: The Calculus of Support,, University of Michigan Press, (1991). Google Scholar

[13]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215. doi: 10.1109/JPROC.2006.887293. Google Scholar

[14]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Transactions on Automatic Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113. Google Scholar

[15]

A. Sarlette, Geometry and Symmetries in Coordination Control,, PhD thesis, (2009). Google Scholar

[16]

A. Sarlette and R. Sepulchre, Consensus optimization on manifolds,, SIAM Journal on Control and Optimization, 48 (2009), 56. doi: 10.1137/060673400. Google Scholar

[17]

D. A. Scheufele and B. V. Lewenstein, The public and nanotechnology: How citizens make sense of emerging technologies,, Journal of Nanoparticle Research, 7 (2005), 659. doi: 10.1007/s11051-005-7526-2. Google Scholar

[18]

R. Sepulchre, Consensus on nonlinear spaces,, Annual reviews in control, 35 (2011), 56. doi: 10.1016/j.arcontrol.2011.03.003. Google Scholar

[19]

P. Sobkowicz, Modelling opinion formation with physics tools: Call for closer link with reality,, Journal of Artificial Societies and Social Simulation, 12 (2009). Google Scholar

[20]

S. H. Strogatz, From kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators,, Physica D: Nonlinear Phenomena, 143 (2000), 1. doi: 10.1016/S0167-2789(00)00094-4. Google Scholar

[21]

K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community,, International Journal of Modern Physics C, 11 (2000), 1157. doi: 10.1142/S0129183100000936. Google Scholar

[22]

J. N. Tsitsiklis, Problems in Decentralized Decision making and Computation.,, PhD thesis, (1984). Google Scholar

[23]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Physical review letters, 75 (1995). doi: 10.1103/PhysRevLett.75.1226. Google Scholar

show all references

References:
[1]

L. Behera and F. Schweitzer, On spatial consensus formation: Is the sznajd model different from a voter model?,, International Journal of Modern Physics C, 14 (2003), 1331. doi: 10.1142/S0129183103005467. Google Scholar

[2]

V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications,, SIAM Journal on Control and Optimization, 48 (2010), 5214. doi: 10.1137/090766188. Google Scholar

[3]

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents,, Advances in Complex Systems, 3 (2000), 87. doi: 10.1142/S0219525900000078. Google Scholar

[4]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, Journal of Artificial Societies and Social Simulation, 5 (). Google Scholar

[5]

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities,, Proceedings of the national academy of sciences, 79 (1982), 2554. doi: 10.1073/pnas.79.8.2554. Google Scholar

[6]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules,, Automatic Control, 48 (2003), 988. doi: 10.1109/TAC.2003.812781. Google Scholar

[7]

Y. Kuramoto, Cooperative dynamics of oscillator community a study based on lattice of rings,, Progress of Theoretical Physics Supplement, 79 (1984), 223. doi: 10.1143/PTPS.79.223. Google Scholar

[8]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819. doi: 10.1142/S0129183107011789. Google Scholar

[9]

L. Moreau, Stability of continuous-time distributed consensus algorithms,, in Decision and Control, (2004), 3998. doi: 10.1109/CDC.2004.1429377. Google Scholar

[10]

L. Moreau, Stability of multiagent systems with time-dependent communication links,, Automatic Control, 50 (2005), 169. doi: 10.1109/TAC.2004.841888. Google Scholar

[11]

M. C. Nisbet, The competition for worldviews: Values, information, and public support for stem cell research,, International Journal of Public Opinion Research, 17 (2005), 90. doi: 10.1093/ijpor/edh058. Google Scholar

[12]

H. Norpohth, M. S. L. Beck and J. D. Lafay, Economics and Politics: The Calculus of Support,, University of Michigan Press, (1991). Google Scholar

[13]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215. doi: 10.1109/JPROC.2006.887293. Google Scholar

[14]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Transactions on Automatic Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113. Google Scholar

[15]

A. Sarlette, Geometry and Symmetries in Coordination Control,, PhD thesis, (2009). Google Scholar

[16]

A. Sarlette and R. Sepulchre, Consensus optimization on manifolds,, SIAM Journal on Control and Optimization, 48 (2009), 56. doi: 10.1137/060673400. Google Scholar

[17]

D. A. Scheufele and B. V. Lewenstein, The public and nanotechnology: How citizens make sense of emerging technologies,, Journal of Nanoparticle Research, 7 (2005), 659. doi: 10.1007/s11051-005-7526-2. Google Scholar

[18]

R. Sepulchre, Consensus on nonlinear spaces,, Annual reviews in control, 35 (2011), 56. doi: 10.1016/j.arcontrol.2011.03.003. Google Scholar

[19]

P. Sobkowicz, Modelling opinion formation with physics tools: Call for closer link with reality,, Journal of Artificial Societies and Social Simulation, 12 (2009). Google Scholar

[20]

S. H. Strogatz, From kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators,, Physica D: Nonlinear Phenomena, 143 (2000), 1. doi: 10.1016/S0167-2789(00)00094-4. Google Scholar

[21]

K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community,, International Journal of Modern Physics C, 11 (2000), 1157. doi: 10.1142/S0129183100000936. Google Scholar

[22]

J. N. Tsitsiklis, Problems in Decentralized Decision making and Computation.,, PhD thesis, (1984). Google Scholar

[23]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Physical review letters, 75 (1995). doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[1]

Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks & Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877

[2]

Sergei Yu. Pilyugin, M. C. Campi. Opinion formation in voting processes under bounded confidence. Networks & Heterogeneous Media, 2019, 14 (3) : 617-632. doi: 10.3934/nhm.2019024

[3]

Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i

[4]

Masatoshi Shiino, Keiji Okumura. Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena. Conference Publications, 2013, 2013 (special) : 685-694. doi: 10.3934/proc.2013.2013.685

[5]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[6]

Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011

[7]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[8]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[9]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[10]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[11]

Domenica Borra, Tommaso Lorenzi. Asymptotic analysis of continuous opinion dynamics models under bounded confidence. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1487-1499. doi: 10.3934/cpaa.2013.12.1487

[12]

Clinton Innes, Razvan C. Fetecau, Ralf W. Wittenberg. Modelling heterogeneity and an open-mindedness social norm in opinion dynamics. Networks & Heterogeneous Media, 2017, 12 (1) : 59-92. doi: 10.3934/nhm.2017003

[13]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[14]

Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129

[15]

Doron Levy, Tiago Requeijo. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 103-128. doi: 10.3934/dcdsb.2008.9.103

[16]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[17]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[18]

M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137

[19]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[20]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (8)

[Back to Top]