September  2015, 35(9): 4477-4501. doi: 10.3934/dcds.2015.35.4477

Uniform convergence of the POD method and applications to optimal control

1. 

Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstraße 36, 8010 Graz, Austria, Austria

Received  May 2014 Revised  September 2014 Published  April 2015

We consider proper orthogonal decomposition (POD) based Galerkin approximations to parabolic systems and establish uniform convergence with respect to forcing functions. The result is used to prove convergence of POD approximations to optimal control problems that automatically update the POD basis in order to avoid problems due to unmodeled dynamics in the POD reduced order system. A numerical example illustrates the results.
Citation: Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477
References:
[1]

D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: New error estimates and illustrative examples,, ESAIM: Mathematical Modelling and Numerical Analysis, 46 (2012), 731. doi: 10.1051/m2an/2011053. Google Scholar

[2]

S. Chaturantabut and D. Sorensen, Nonlinear model reduction via discrete empirical interpolation,, SIAM Journal Scientific Computing, 32 (2010), 2737. doi: 10.1137/090766498. Google Scholar

[3]

T. Henri, Réduction de Modèles par des Méthodes de Décomposition Orthogonale Propre,, PhD thesis, (2003). Google Scholar

[4]

T. Henri and J. Yvon, Convergence estimates of POD-Galerkin methods for parabolic problems,, System modeling and optimization, 166 (2005), 295. doi: 10.1007/0-387-23467-5_21. Google Scholar

[5]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using POD,, Mathematical and Computer Modelling, 38 (2003), 1003. doi: 10.1016/S0895-7177(03)90102-6. Google Scholar

[6]

K. Kunisch and S. Volkwein, Galerkin POD methods for parabolic problems,, Numerische Mathematik, 90 (2001), 117. doi: 10.1007/s002110100282. Google Scholar

[7]

K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems,, ESAIM: M2AN, 42 (2008), 1. doi: 10.1051/m2an:2007054. Google Scholar

[8]

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar

[9]

G. Lube, Theorie und Numerik Instationärer Probleme, 2007,, Lecture Notes, (). Google Scholar

[10]

R. Meise and D. Vogt, Introduction to Functional Analysis,, Oxford graduate texts in mathematics, (1997). Google Scholar

[11]

M. Müller, Uniform Convergence of the POD Method and Applications to Optimal Control,, PhD thesis, (2011). Google Scholar

[12]

L. Schwartz, Analyse Hilbertienne,, Hermann Paris, (1979). Google Scholar

[13]

H. Triebel, Higher Analysis,, Johann Ambrosius Barth, (1992). Google Scholar

[14]

H. Triebel, Theory of Function Spaces III,, Birkhäuser Verlag, (2006). Google Scholar

[15]

F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems,, Computational Optimization and Applications, 44 (2009), 83. doi: 10.1007/s10589-008-9224-3. Google Scholar

[16]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems,, Control and Cybernetics, 40 (2011), 1109. Google Scholar

[17]

K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition,, Balanced Model Reduction via the Proper Orthogonal Decomposition, 40 (2002), 2323. doi: 10.2514/2.1570. Google Scholar

[18]

J. Wloka, Partielle Differentialgleichungen,, B.G. Teubner, (1982). Google Scholar

show all references

References:
[1]

D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: New error estimates and illustrative examples,, ESAIM: Mathematical Modelling and Numerical Analysis, 46 (2012), 731. doi: 10.1051/m2an/2011053. Google Scholar

[2]

S. Chaturantabut and D. Sorensen, Nonlinear model reduction via discrete empirical interpolation,, SIAM Journal Scientific Computing, 32 (2010), 2737. doi: 10.1137/090766498. Google Scholar

[3]

T. Henri, Réduction de Modèles par des Méthodes de Décomposition Orthogonale Propre,, PhD thesis, (2003). Google Scholar

[4]

T. Henri and J. Yvon, Convergence estimates of POD-Galerkin methods for parabolic problems,, System modeling and optimization, 166 (2005), 295. doi: 10.1007/0-387-23467-5_21. Google Scholar

[5]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using POD,, Mathematical and Computer Modelling, 38 (2003), 1003. doi: 10.1016/S0895-7177(03)90102-6. Google Scholar

[6]

K. Kunisch and S. Volkwein, Galerkin POD methods for parabolic problems,, Numerische Mathematik, 90 (2001), 117. doi: 10.1007/s002110100282. Google Scholar

[7]

K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems,, ESAIM: M2AN, 42 (2008), 1. doi: 10.1051/m2an:2007054. Google Scholar

[8]

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar

[9]

G. Lube, Theorie und Numerik Instationärer Probleme, 2007,, Lecture Notes, (). Google Scholar

[10]

R. Meise and D. Vogt, Introduction to Functional Analysis,, Oxford graduate texts in mathematics, (1997). Google Scholar

[11]

M. Müller, Uniform Convergence of the POD Method and Applications to Optimal Control,, PhD thesis, (2011). Google Scholar

[12]

L. Schwartz, Analyse Hilbertienne,, Hermann Paris, (1979). Google Scholar

[13]

H. Triebel, Higher Analysis,, Johann Ambrosius Barth, (1992). Google Scholar

[14]

H. Triebel, Theory of Function Spaces III,, Birkhäuser Verlag, (2006). Google Scholar

[15]

F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems,, Computational Optimization and Applications, 44 (2009), 83. doi: 10.1007/s10589-008-9224-3. Google Scholar

[16]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems,, Control and Cybernetics, 40 (2011), 1109. Google Scholar

[17]

K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition,, Balanced Model Reduction via the Proper Orthogonal Decomposition, 40 (2002), 2323. doi: 10.2514/2.1570. Google Scholar

[18]

J. Wloka, Partielle Differentialgleichungen,, B.G. Teubner, (1982). Google Scholar

[1]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006

[2]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279

[3]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[4]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[5]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[6]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[7]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[8]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[9]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[10]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

[11]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[12]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[13]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[14]

Wolf-Jürgen Beyn, Sergey Piskarev. Shadowing for discrete approximations of abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 19-42. doi: 10.3934/dcdsb.2008.10.19

[15]

Serge Nicaise, Fredi Tröltzsch. Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1375-1391. doi: 10.3934/dcdss.2017073

[16]

Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060

[17]

Peng Zhong, Suzanne Lenhart. Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations. Evolution Equations & Control Theory, 2013, 2 (4) : 749-769. doi: 10.3934/eect.2013.2.749

[18]

Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2281-2298. doi: 10.3934/dcdsb.2012.17.2281

[19]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[20]

Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]