September  2015, 35(9): 4553-4572. doi: 10.3934/dcds.2015.35.4553

Adaptive time--mesh refinement in optimal control problems with state constraints

1. 

SYSTEC-ISR, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal

2. 

ISR-Porto, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal

Received  May 2014 Revised  October 2014 Published  April 2015

When using direct methods to solve continuous-time nonlinear optimal control problems, regular time meshes having equidistant spacing are most frequently used. However, in some cases, these meshes cannot cope accurately with nonlinear behaviour and increasing uniformly the number of mesh nodes may lead to a more complex problem. We propose an adaptive time--mesh refinement algorithm, considering different levels of refinement and several mesh refinement criteria. Namely, we use information of the adjoint multipliers to decide where to refine further. This technique is here tested to solve two optimal control problems. One involving nonholonomic vehicles with state constraints which is characterized by having strong nonlinearities and by discontinuous controls; the other is also a nonlinear problem of a compartmental SEIR system. The proposed strategy leads to results with higher accuracy and yet with lower overall computational time, when compared to results obtained by meshes having equidistant spacing. We also apply the necessary condition of optimality in the form of the Maximum Principle of Pontryagin to characterize the solution and to validate the numerical results.
Citation: Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553
References:
[1]

J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming,, SIAM, (2001).   Google Scholar

[2]

J. T. Betts, N. Biehn, S. L. Campbell and W. P. Huffman, Compensating for order variation in mesh refinement for direct transcription methods,, Journal of Computational and Applied Mathematics, 125 (2000), 147.  doi: 10.1016/S0377-0427(00)00465-9.  Google Scholar

[3]

J. T. Betts and W. P. Huffman, Mesh refinement in direct transcription methods for optimal control,, Optimal Control Applications and Methods, 19 (1998), 1.  doi: 10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q.  Google Scholar

[4]

M. H. A. Biswas, L. T. Paiva and M. d. R. de Pinho, A SEIR model for control of infectious diseases with constraints,, Mathematical Biosciences and Engineering, 11 (2014), 761.  doi: 10.3934/mbe.2014.11.761.  Google Scholar

[5]

P. Falugi, E. Kerrigan and E. Van Wyk, Imperial College London Optimal Control Software. User Guide (ICLOCS),, Department of Electrical Engineering, (2010).   Google Scholar

[6]

F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers,, Systems and Control Letters, 42 (2001), 127.  doi: 10.1016/S0167-6911(00)00084-0.  Google Scholar

[7]

F. A. C. C. Fontes and H. Frankowska, Normality and nondegeneracy for optimal control problems with state constraints,, Journal of Optimization Theory and Applications, 22 (2015).  doi: 10.1007/s10957-015-0704-1.  Google Scholar

[8]

F. A. C. C. Fontes and S. O. Lopes, Normal forms of necessary conditions for dynamic optimization problems with pathwise inequality constraints,, Journal of Mathematical Analysis and Applications, 399 (2013), 27.  doi: 10.1016/j.jmaa.2012.09.049.  Google Scholar

[9]

I. Kolmanovsky and N. McClamroch, Developments in nonholonomic control problems,, IEEE Control Systems, 15 (1995), 20.  doi: 10.1109/37.476384.  Google Scholar

[10]

I. Kornienko, L. T. Paiva and M. d. R. d. Pinho, Introducing state constraints in optimal control for health problems,, Procedia Technology, 17 (2014), 415.  doi: 10.1016/j.protcy.2014.10.249.  Google Scholar

[11]

S. O. Lopes, F. A. Fontes and M. d. R. de Pinho, On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems,, Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011), 559.  doi: 10.3934/dcds.2011.29.559.  Google Scholar

[12]

R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling,, Modeling paradigms and analysis of disease transmission models, 75 (2010), 67.   Google Scholar

[13]

L. T. Paiva, Optimal Control in Constrained and Hybrid Nonlinear System: Solvers and Interfaces,, Technical report, (2013).   Google Scholar

[14]

L. T. Paiva and F. A. C. C. Fontes, Mesh refinement strategy for optimal control problems,, AIP Conference Proceedings, 1558 (2013), 590.  doi: 10.1063/1.4825560.  Google Scholar

[15]

L. T. Paiva and F. A. C. C. Fontes, Time-mesh refinement in optimal control problems for nonholonomic vehicles,, Procedia Technology, 17 (2014), 178.  doi: 10.1016/j.protcy.2014.10.226.  Google Scholar

[16]

M. A. Patterson, W. W. Hager and A. V. Rao, A ph mesh refinement method for optimal control,, Optimal Control Applications and Methods, ().   Google Scholar

[17]

R. B. Vinter, Optimal Control,, Springer, (2000).   Google Scholar

[18]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[19]

Y. Zhao and P. Tsiotras, Density functions for mesh refinement in numerical optimal control,, Journal of Guidance, 34 (2011), 271.  doi: 10.2514/1.45852.  Google Scholar

show all references

References:
[1]

J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming,, SIAM, (2001).   Google Scholar

[2]

J. T. Betts, N. Biehn, S. L. Campbell and W. P. Huffman, Compensating for order variation in mesh refinement for direct transcription methods,, Journal of Computational and Applied Mathematics, 125 (2000), 147.  doi: 10.1016/S0377-0427(00)00465-9.  Google Scholar

[3]

J. T. Betts and W. P. Huffman, Mesh refinement in direct transcription methods for optimal control,, Optimal Control Applications and Methods, 19 (1998), 1.  doi: 10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q.  Google Scholar

[4]

M. H. A. Biswas, L. T. Paiva and M. d. R. de Pinho, A SEIR model for control of infectious diseases with constraints,, Mathematical Biosciences and Engineering, 11 (2014), 761.  doi: 10.3934/mbe.2014.11.761.  Google Scholar

[5]

P. Falugi, E. Kerrigan and E. Van Wyk, Imperial College London Optimal Control Software. User Guide (ICLOCS),, Department of Electrical Engineering, (2010).   Google Scholar

[6]

F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers,, Systems and Control Letters, 42 (2001), 127.  doi: 10.1016/S0167-6911(00)00084-0.  Google Scholar

[7]

F. A. C. C. Fontes and H. Frankowska, Normality and nondegeneracy for optimal control problems with state constraints,, Journal of Optimization Theory and Applications, 22 (2015).  doi: 10.1007/s10957-015-0704-1.  Google Scholar

[8]

F. A. C. C. Fontes and S. O. Lopes, Normal forms of necessary conditions for dynamic optimization problems with pathwise inequality constraints,, Journal of Mathematical Analysis and Applications, 399 (2013), 27.  doi: 10.1016/j.jmaa.2012.09.049.  Google Scholar

[9]

I. Kolmanovsky and N. McClamroch, Developments in nonholonomic control problems,, IEEE Control Systems, 15 (1995), 20.  doi: 10.1109/37.476384.  Google Scholar

[10]

I. Kornienko, L. T. Paiva and M. d. R. d. Pinho, Introducing state constraints in optimal control for health problems,, Procedia Technology, 17 (2014), 415.  doi: 10.1016/j.protcy.2014.10.249.  Google Scholar

[11]

S. O. Lopes, F. A. Fontes and M. d. R. de Pinho, On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems,, Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011), 559.  doi: 10.3934/dcds.2011.29.559.  Google Scholar

[12]

R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling,, Modeling paradigms and analysis of disease transmission models, 75 (2010), 67.   Google Scholar

[13]

L. T. Paiva, Optimal Control in Constrained and Hybrid Nonlinear System: Solvers and Interfaces,, Technical report, (2013).   Google Scholar

[14]

L. T. Paiva and F. A. C. C. Fontes, Mesh refinement strategy for optimal control problems,, AIP Conference Proceedings, 1558 (2013), 590.  doi: 10.1063/1.4825560.  Google Scholar

[15]

L. T. Paiva and F. A. C. C. Fontes, Time-mesh refinement in optimal control problems for nonholonomic vehicles,, Procedia Technology, 17 (2014), 178.  doi: 10.1016/j.protcy.2014.10.226.  Google Scholar

[16]

M. A. Patterson, W. W. Hager and A. V. Rao, A ph mesh refinement method for optimal control,, Optimal Control Applications and Methods, ().   Google Scholar

[17]

R. B. Vinter, Optimal Control,, Springer, (2000).   Google Scholar

[18]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[19]

Y. Zhao and P. Tsiotras, Density functions for mesh refinement in numerical optimal control,, Journal of Guidance, 34 (2011), 271.  doi: 10.2514/1.45852.  Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[15]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]