-
Previous Article
On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion
- DCDS Home
- This Issue
-
Next Article
A class of mixing special flows over two--dimensional rotations
Ergodicity of two particles with attractive interaction
1. | Institut für Statistik und Wahrscheinlichkeitstheorie, TU Wien, 1040 Wien, Austria |
2. | Institut für Theoretische Physik, TU Wien, 1040 Wien, Austria |
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[2] |
R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982. |
[3] | |
[4] |
M. Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Mathematical Journal, 52 (1985), 723-752.
doi: 10.1215/S0012-7094-85-05238-X. |
[5] |
G. R. Brannock and J. K. Percus, Wertheim cluster development of free energy functionals for general nearest-neighbor interactions in $D=1$, The Journal of Chemical Physics, 105 (1996), 614-627.
doi: 10.1063/1.471920. |
[6] |
J. A. Cuesta and C. Tutschka, Overcomplete free energy functional for $D=1$ particle systems with next neighbor interactions, Journal of Statistical Physics, 111 (2003), 1125-1148.
doi: 10.1023/A:1023096031180. |
[7] |
K. F. Herzfeld and M. Goeppert-Mayer, On the states of aggregation, The Journal of Chemical Physics, 2 (1934), 38-45.
doi: 10.1063/1.1749355. |
[8] |
M. Keane, Interval exchange transformations, Mathematische Zeitschrift, 141 (1975), 25-31.
doi: 10.1007/BF01236981. |
[9] |
S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Mathematics, 124 (1986), 293-311.
doi: 10.2307/1971280. |
[10] |
A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, 1949. |
[11] |
H. Masur, Interval exchange transformations and measured foliations, Annals of Mathematics, 115 (1982), 169-200.
doi: 10.2307/1971341. |
[12] |
A. van der Poorten, Fermat's four squares theorem, 2007. Available from: http://maths.mq.edu.au/~alf/SomeRecentPapers/183.pdf. |
[13] |
D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, 1969. |
[14] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics, 115 (1982), 201-242.
doi: 10.2307/1971391. |
show all references
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[2] |
R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982. |
[3] | |
[4] |
M. Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Mathematical Journal, 52 (1985), 723-752.
doi: 10.1215/S0012-7094-85-05238-X. |
[5] |
G. R. Brannock and J. K. Percus, Wertheim cluster development of free energy functionals for general nearest-neighbor interactions in $D=1$, The Journal of Chemical Physics, 105 (1996), 614-627.
doi: 10.1063/1.471920. |
[6] |
J. A. Cuesta and C. Tutschka, Overcomplete free energy functional for $D=1$ particle systems with next neighbor interactions, Journal of Statistical Physics, 111 (2003), 1125-1148.
doi: 10.1023/A:1023096031180. |
[7] |
K. F. Herzfeld and M. Goeppert-Mayer, On the states of aggregation, The Journal of Chemical Physics, 2 (1934), 38-45.
doi: 10.1063/1.1749355. |
[8] |
M. Keane, Interval exchange transformations, Mathematische Zeitschrift, 141 (1975), 25-31.
doi: 10.1007/BF01236981. |
[9] |
S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Mathematics, 124 (1986), 293-311.
doi: 10.2307/1971280. |
[10] |
A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, 1949. |
[11] |
H. Masur, Interval exchange transformations and measured foliations, Annals of Mathematics, 115 (1982), 169-200.
doi: 10.2307/1971341. |
[12] |
A. van der Poorten, Fermat's four squares theorem, 2007. Available from: http://maths.mq.edu.au/~alf/SomeRecentPapers/183.pdf. |
[13] |
D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, 1969. |
[14] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics, 115 (1982), 201-242.
doi: 10.2307/1971391. |
[1] |
Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006 |
[2] |
Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457 |
[3] |
Jianyu Chen, Hong-Kun Zhang. Statistical properties of one-dimensional expanding maps with singularities of low regularity. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4955-4977. doi: 10.3934/dcds.2019203 |
[4] |
David Melching, Ulisse Stefanelli. Well-posedness of a one-dimensional nonlinear kinematic hardening model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2271-2284. doi: 10.3934/dcdss.2020188 |
[5] |
Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011 |
[6] |
Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289 |
[7] |
Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997 |
[8] |
Atul Kumar, R. R. Yadav. Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457-466. doi: 10.3934/proc.2013.2013.457 |
[9] |
Maria João Costa. Chaotic behaviour of one-dimensional horseshoes. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 505-548. doi: 10.3934/dcds.2003.9.505 |
[10] |
Sebastian van Strien. One-dimensional dynamics in the new millennium. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 557-588. doi: 10.3934/dcds.2010.27.557 |
[11] |
Yunping Jiang. On a question of Katok in one-dimensional case. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209 |
[12] |
Francisco J. López-Hernández. Dynamics of induced homeomorphisms of one-dimensional solenoids. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4243-4257. doi: 10.3934/dcds.2018185 |
[13] |
Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541 |
[14] |
James Nolen, Jack Xin. KPP fronts in a one-dimensional random drift. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 421-442. doi: 10.3934/dcdsb.2009.11.421 |
[15] |
Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965 |
[16] |
Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010 |
[17] |
Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533 |
[18] |
Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta. One-dimensional nonlinear boundary value problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 179-191. doi: 10.3934/dcdss.2018011 |
[19] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure and Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[20] |
Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]