American Institute of Mathematical Sciences

• Previous Article
Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology
• NHM Home
• This Issue
• Next Article
On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime
June  2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343

Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition

 1 University of Wyoming, Department of Mathematics, Dept. 3036, 1000 East University Avenue, Laramie, WY 82071 2 Department of Mathematics & ISC, Texas A&M University, 3404 TAMU, College Station, TX 77843-3404 3 Numerical Porous Media SRI Center, CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Received  February 2014 Revised  October 2014 Published  April 2015

The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the two-scale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508--1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived.
Citation: Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343
References:

show all references

References:
 [1] Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713 [2] H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure & Applied Analysis, 2006, 5 (4) : 907-918. doi: 10.3934/cpaa.2006.5.907 [3] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189 [4] Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $\Lambda$-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 [5] Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153 [6] Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461 [7] Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97 [8] Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361 [9] Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks & Heterogeneous Media, 2021, 16 (3) : 341-375. doi: 10.3934/nhm.2021009 [10] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić. Homogenization approach to filtration through a fibrous medium. Networks & Heterogeneous Media, 2007, 2 (3) : 529-550. doi: 10.3934/nhm.2007.2.529 [11] Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 [12] Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283 [13] Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353 [14] João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641 [15] Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003 [16] Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473 [17] Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102 [18] Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193 [19] Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181 [20] Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations & Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070

2020 Impact Factor: 1.213