May  2015, 9(2): 199-210. doi: 10.3934/amc.2015.9.199

A class of quaternary sequences with low correlation

1. 

Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031, China, China

2. 

Department of Informatics, University of Bergen, N-5020 Bergen

Received  March 2014 Revised  November 2014 Published  May 2015

A class of quaternary sequences $\mathbb{S}_{\lambda}$ had been proven to be optimal for some special values of $\lambda$. In this note, $\mathbb{S}_{\lambda}$ is investigated for all $\lambda$ by virtue of the $\mathbb{Z}_4$-valued quadratic forms over Galois rings. As a consequence, a new class of quaternary sequences with low correlation is obtained and the correlation distribution is also completely determined. It also turns out that the known optimal quaternary sequences $\mathbb{S}_{\lambda}$ for particular $\lambda$ can be easily obtained from our approach.
Citation: Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199
References:
[1]

S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.  doi: 10.1109/18.135649.  Google Scholar

[2]

S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.  doi: 10.1109/18.312181.  Google Scholar

[3]

E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.  doi: 10.2307/1970804.  Google Scholar

[4]

P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996).   Google Scholar

[5]

R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.  doi: 10.1109/TIT.1968.1054106.  Google Scholar

[6]

T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).   Google Scholar

[7]

W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.  doi: 10.1109/TIT.2008.2008122.  Google Scholar

[8]

A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.  doi: 10.1109/TIT.2008.924727.  Google Scholar

[9]

T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966).   Google Scholar

[10]

S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.  doi: 10.1109/TIT.2003.818399.  Google Scholar

[11]

P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.  doi: 10.1109/18.485726.  Google Scholar

[12]

N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.  doi: 10.1109/TIT.2011.2132670.  Google Scholar

[13]

K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.  doi: 10.1109/TIT.2009.2032818.  Google Scholar

[14]

V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.   Google Scholar

[15]

X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.  doi: 10.1109/TIT.2011.2110290.  Google Scholar

[16]

X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.  doi: 10.1007/s10623-009-9294-y.  Google Scholar

[17]

X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.  doi: 10.1109/TIT.2009.2013023.  Google Scholar

[18]

X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.  doi: 10.1109/TIT.2006.887502.  Google Scholar

[19]

X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.  doi: 10.1007/11423461_17.  Google Scholar

[20]

P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992).   Google Scholar

[21]

P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.  doi: 10.1007/s002000050101.  Google Scholar

[22]

L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.  doi: 10.1109/TIT.1974.1055219.  Google Scholar

show all references

References:
[1]

S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.  doi: 10.1109/18.135649.  Google Scholar

[2]

S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.  doi: 10.1109/18.312181.  Google Scholar

[3]

E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.  doi: 10.2307/1970804.  Google Scholar

[4]

P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996).   Google Scholar

[5]

R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.  doi: 10.1109/TIT.1968.1054106.  Google Scholar

[6]

T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).   Google Scholar

[7]

W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.  doi: 10.1109/TIT.2008.2008122.  Google Scholar

[8]

A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.  doi: 10.1109/TIT.2008.924727.  Google Scholar

[9]

T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966).   Google Scholar

[10]

S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.  doi: 10.1109/TIT.2003.818399.  Google Scholar

[11]

P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.  doi: 10.1109/18.485726.  Google Scholar

[12]

N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.  doi: 10.1109/TIT.2011.2132670.  Google Scholar

[13]

K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.  doi: 10.1109/TIT.2009.2032818.  Google Scholar

[14]

V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.   Google Scholar

[15]

X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.  doi: 10.1109/TIT.2011.2110290.  Google Scholar

[16]

X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.  doi: 10.1007/s10623-009-9294-y.  Google Scholar

[17]

X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.  doi: 10.1109/TIT.2009.2013023.  Google Scholar

[18]

X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.  doi: 10.1109/TIT.2006.887502.  Google Scholar

[19]

X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.  doi: 10.1007/11423461_17.  Google Scholar

[20]

P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992).   Google Scholar

[21]

P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.  doi: 10.1007/s002000050101.  Google Scholar

[22]

L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.  doi: 10.1109/TIT.1974.1055219.  Google Scholar

[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[3]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[4]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[5]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[6]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[7]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (118)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]