-
Previous Article
Binary codes from reflexive uniform subset graphs on $3$-sets
- AMC Home
- This Issue
-
Next Article
Cyclic orbit codes and stabilizer subfields
A class of quaternary sequences with low correlation
1. | Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031, China, China |
2. | Department of Informatics, University of Bergen, N-5020 Bergen |
References:
[1] |
S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.
doi: 10.1109/18.135649. |
[2] |
S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.
doi: 10.1109/18.312181. |
[3] |
E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.
doi: 10.2307/1970804. |
[4] |
P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996). Google Scholar |
[5] |
R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.
doi: 10.1109/TIT.1968.1054106. |
[6] |
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).
|
[7] |
W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.
doi: 10.1109/TIT.2008.2008122. |
[8] |
A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.
doi: 10.1109/TIT.2008.924727. |
[9] |
T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966). Google Scholar |
[10] |
S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.
doi: 10.1109/TIT.2003.818399. |
[11] |
P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.
doi: 10.1109/18.485726. |
[12] |
N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.
doi: 10.1109/TIT.2011.2132670. |
[13] |
K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.
doi: 10.1109/TIT.2009.2032818. |
[14] |
V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.
|
[15] |
X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.
doi: 10.1109/TIT.2011.2110290. |
[16] |
X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.
doi: 10.1007/s10623-009-9294-y. |
[17] |
X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.
doi: 10.1109/TIT.2009.2013023. |
[18] |
X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.
doi: 10.1109/TIT.2006.887502. |
[19] |
X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.
doi: 10.1007/11423461_17. |
[20] |
P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992). Google Scholar |
[21] |
P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.
doi: 10.1007/s002000050101. |
[22] |
L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.
doi: 10.1109/TIT.1974.1055219. |
show all references
References:
[1] |
S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.
doi: 10.1109/18.135649. |
[2] |
S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.
doi: 10.1109/18.312181. |
[3] |
E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.
doi: 10.2307/1970804. |
[4] |
P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996). Google Scholar |
[5] |
R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.
doi: 10.1109/TIT.1968.1054106. |
[6] |
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).
|
[7] |
W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.
doi: 10.1109/TIT.2008.2008122. |
[8] |
A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.
doi: 10.1109/TIT.2008.924727. |
[9] |
T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966). Google Scholar |
[10] |
S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.
doi: 10.1109/TIT.2003.818399. |
[11] |
P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.
doi: 10.1109/18.485726. |
[12] |
N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.
doi: 10.1109/TIT.2011.2132670. |
[13] |
K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.
doi: 10.1109/TIT.2009.2032818. |
[14] |
V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.
|
[15] |
X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.
doi: 10.1109/TIT.2011.2110290. |
[16] |
X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.
doi: 10.1007/s10623-009-9294-y. |
[17] |
X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.
doi: 10.1109/TIT.2009.2013023. |
[18] |
X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.
doi: 10.1109/TIT.2006.887502. |
[19] |
X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.
doi: 10.1007/11423461_17. |
[20] |
P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992). Google Scholar |
[21] |
P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.
doi: 10.1007/s002000050101. |
[22] |
L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.
doi: 10.1109/TIT.1974.1055219. |
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[3] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[4] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[5] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[6] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[7] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]