-
Previous Article
Partial hyperbolicity and foliations in $\mathbb{T}^3$
- JMD Home
- This Volume
-
Next Article
Spectral killers and Poisson bracket invariants
Topological full groups of minimal subshifts with subgroups of intermediate growth
1. | Laboratoire de Mathémathiques d’Orsay, Université Paris-Sud, F-91405 Orsay Cedex & DMA, École Normale Supérieure, 45 Rue d’Ulm, 75005, Paris, France |
This work is partially supported by the ERC starting grant GA 257110 “RaWG”. We show that every Grigorchuk group $G_\omega$ embeds in (the commutator subgroup of) the topological full group of a minimal subshift. In particular, the topological full group of a Cantor minimal system can have subgroups of intermediate growth, a question raised by Grigorchuk; moreover it can have finitely generated infinite torsion subgroups, answering a question of Cornulier. By estimating the word-complexity of this subshift, we deduce that every Grigorchuk group $G_\omega$ can be embedded in a finitely generated simple group that has trivial Poisson boundary for every simple random walk.
This work is partially supported by the ERC starting grant GA 257110 “RaWG”.
References:
[1] |
A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle,, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25.
|
[2] |
L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups,, Tr. Mat. Inst. Steklova (Din. Sist., 231 (2000), 5. Google Scholar |
[3] |
L. Bartholdi, R. I. Grigorchuk and Z. Šuniḱ, Branch groups,, in Handbook of Algebra, (2003), 989.
doi: 10.1016/S1570-7954(03)80078-5. |
[4] |
J. Cassaigne and F. Nicolas, Factor complexity,, in Combinatorics, (2010), 163.
|
[5] |
Y. Cornulier, Groupes pleins-topologiques [d'après Matui, Juschenko, Monod,...],, Astérisque, (2012). Google Scholar |
[6] |
G. Elek and N. Monod, On the topological full group of a minimal Cantor $\mathbbZ^2$-system,, Proc. Amer. Math. Soc., 141 (2013), 3549.
doi: 10.1090/S0002-9939-2013-11654-0. |
[7] |
R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order,, preprint, (2014). Google Scholar |
[8] |
A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups,, Mat. Zametki, 16 (1974), 231.
|
[9] |
W. H. Gottschalk, Almost period points with respect to transformation semi-groups,, Ann. of Math. (2), 47 (1946), 762.
doi: 10.2307/1969233. |
[10] |
T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems,, Israel J. Math., 111 (1999), 285.
doi: 10.1007/BF02810689. |
[11] |
R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means,, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939.
|
[12] |
P. Hall, On the embedding of a group in a join of given groups,, Collection of articles dedicated to the memory of Hanna Neumann, 17 (1974), 434.
doi: 10.1017/S1446788700018073. |
[13] |
K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups,, Ann. of Math. (2), 178 (2013), 775.
doi: 10.4007/annals.2013.178.2.7. |
[14] |
V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy,, Ann. Probab., 11 (1983), 457.
doi: 10.1214/aop/1176993497. |
[15] |
H. Matui, Some remarks on topological full groups of Cantor minimal systems,, Internat. J. Math., 17 (2006), 231.
doi: 10.1142/S0129167X06003448. |
[16] |
H. Matui, Some remarks on topological full groups of Cantor minimal systems II,, Ergodic Theory Dynam. Systems, 33 (2013), 1542.
doi: 10.1017/S0143385712000399. |
[17] |
N. Matte Bon, Subshifts with slow complexity and simple groups with the Liouville property,, Geom. Funct. Anal., 24 (2014), 1637.
doi: 10.1007/s00039-014-0293-4. |
[18] |
M. Queffélec, Substitution Dynamical Systems-Spectral Analysis,, Lecture Notes in Mathematics, (1294).
|
[19] |
P. E. Schupp, Embeddings into simple groups,, J. London Math. Soc. (2), 13 (1976), 90.
|
[20] |
E. K. van Douwen, Measures invariant under actions of $F_2$,, Topology Appl., 34 (1990), 53.
doi: 10.1016/0166-8641(90)90089-K. |
[21] |
Ya. Vorobets, On a substitution subshift related to the Grigorchuk group,, Tr. Mat. Inst. Steklova, 271 (2010), 319.
doi: 10.1134/S0081543810040218. |
[22] |
Ya. Vorobets, Notes on the Schreier graphs of the Grigorchuk group,, in Dynamical Systems and Group Actions, (2012), 221.
doi: 10.1090/conm/567/11250. |
show all references
References:
[1] |
A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle,, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25.
|
[2] |
L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups,, Tr. Mat. Inst. Steklova (Din. Sist., 231 (2000), 5. Google Scholar |
[3] |
L. Bartholdi, R. I. Grigorchuk and Z. Šuniḱ, Branch groups,, in Handbook of Algebra, (2003), 989.
doi: 10.1016/S1570-7954(03)80078-5. |
[4] |
J. Cassaigne and F. Nicolas, Factor complexity,, in Combinatorics, (2010), 163.
|
[5] |
Y. Cornulier, Groupes pleins-topologiques [d'après Matui, Juschenko, Monod,...],, Astérisque, (2012). Google Scholar |
[6] |
G. Elek and N. Monod, On the topological full group of a minimal Cantor $\mathbbZ^2$-system,, Proc. Amer. Math. Soc., 141 (2013), 3549.
doi: 10.1090/S0002-9939-2013-11654-0. |
[7] |
R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order,, preprint, (2014). Google Scholar |
[8] |
A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups,, Mat. Zametki, 16 (1974), 231.
|
[9] |
W. H. Gottschalk, Almost period points with respect to transformation semi-groups,, Ann. of Math. (2), 47 (1946), 762.
doi: 10.2307/1969233. |
[10] |
T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems,, Israel J. Math., 111 (1999), 285.
doi: 10.1007/BF02810689. |
[11] |
R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means,, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939.
|
[12] |
P. Hall, On the embedding of a group in a join of given groups,, Collection of articles dedicated to the memory of Hanna Neumann, 17 (1974), 434.
doi: 10.1017/S1446788700018073. |
[13] |
K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups,, Ann. of Math. (2), 178 (2013), 775.
doi: 10.4007/annals.2013.178.2.7. |
[14] |
V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy,, Ann. Probab., 11 (1983), 457.
doi: 10.1214/aop/1176993497. |
[15] |
H. Matui, Some remarks on topological full groups of Cantor minimal systems,, Internat. J. Math., 17 (2006), 231.
doi: 10.1142/S0129167X06003448. |
[16] |
H. Matui, Some remarks on topological full groups of Cantor minimal systems II,, Ergodic Theory Dynam. Systems, 33 (2013), 1542.
doi: 10.1017/S0143385712000399. |
[17] |
N. Matte Bon, Subshifts with slow complexity and simple groups with the Liouville property,, Geom. Funct. Anal., 24 (2014), 1637.
doi: 10.1007/s00039-014-0293-4. |
[18] |
M. Queffélec, Substitution Dynamical Systems-Spectral Analysis,, Lecture Notes in Mathematics, (1294).
|
[19] |
P. E. Schupp, Embeddings into simple groups,, J. London Math. Soc. (2), 13 (1976), 90.
|
[20] |
E. K. van Douwen, Measures invariant under actions of $F_2$,, Topology Appl., 34 (1990), 53.
doi: 10.1016/0166-8641(90)90089-K. |
[21] |
Ya. Vorobets, On a substitution subshift related to the Grigorchuk group,, Tr. Mat. Inst. Steklova, 271 (2010), 319.
doi: 10.1134/S0081543810040218. |
[22] |
Ya. Vorobets, Notes on the Schreier graphs of the Grigorchuk group,, in Dynamical Systems and Group Actions, (2012), 221.
doi: 10.1090/conm/567/11250. |
[1] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[2] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[3] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[4] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[5] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[6] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[7] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[8] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[9] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[10] |
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218 |
[11] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[12] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[13] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[14] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[15] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[16] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[17] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[18] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[19] |
Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021005 |
[20] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]