2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

Topological full groups of minimal subshifts with subgroups of intermediate growth

1. 

Laboratoire de Mathémathiques d’Orsay, Université Paris-Sud, F-91405 Orsay Cedex & DMA, École Normale Supérieure, 45 Rue d’Ulm, 75005, Paris, France

Received  August 2014 Revised  January 2015 Published  May 2015


This work is partially supported by the ERC starting grant GA 257110 “RaWG”. We show that every Grigorchuk group $G_\omega$ embeds in (the commutator subgroup of) the topological full group of a minimal subshift. In particular, the topological full group of a Cantor minimal system can have subgroups of intermediate growth, a question raised by Grigorchuk; moreover it can have finitely generated infinite torsion subgroups, answering a question of Cornulier. By estimating the word-complexity of this subshift, we deduce that every Grigorchuk group $G_\omega$ can be embedded in a finitely generated simple group that has trivial Poisson boundary for every simple random walk.

    This work is partially supported by the ERC starting grant GA 257110 “RaWG”.
Citation: Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67
References:
[1]

A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle,, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25.   Google Scholar

[2]

L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups,, Tr. Mat. Inst. Steklova (Din. Sist., 231 (2000), 5.   Google Scholar

[3]

L. Bartholdi, R. I. Grigorchuk and Z. Šuniḱ, Branch groups,, in Handbook of Algebra, (2003), 989.  doi: 10.1016/S1570-7954(03)80078-5.  Google Scholar

[4]

J. Cassaigne and F. Nicolas, Factor complexity,, in Combinatorics, (2010), 163.   Google Scholar

[5]

Y. Cornulier, Groupes pleins-topologiques [d'après Matui, Juschenko, Monod,...],, Astérisque, (2012).   Google Scholar

[6]

G. Elek and N. Monod, On the topological full group of a minimal Cantor $\mathbbZ^2$-system,, Proc. Amer. Math. Soc., 141 (2013), 3549.  doi: 10.1090/S0002-9939-2013-11654-0.  Google Scholar

[7]

R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order,, preprint, (2014).   Google Scholar

[8]

A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups,, Mat. Zametki, 16 (1974), 231.   Google Scholar

[9]

W. H. Gottschalk, Almost period points with respect to transformation semi-groups,, Ann. of Math. (2), 47 (1946), 762.  doi: 10.2307/1969233.  Google Scholar

[10]

T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems,, Israel J. Math., 111 (1999), 285.  doi: 10.1007/BF02810689.  Google Scholar

[11]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means,, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939.   Google Scholar

[12]

P. Hall, On the embedding of a group in a join of given groups,, Collection of articles dedicated to the memory of Hanna Neumann, 17 (1974), 434.  doi: 10.1017/S1446788700018073.  Google Scholar

[13]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups,, Ann. of Math. (2), 178 (2013), 775.  doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[14]

V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy,, Ann. Probab., 11 (1983), 457.  doi: 10.1214/aop/1176993497.  Google Scholar

[15]

H. Matui, Some remarks on topological full groups of Cantor minimal systems,, Internat. J. Math., 17 (2006), 231.  doi: 10.1142/S0129167X06003448.  Google Scholar

[16]

H. Matui, Some remarks on topological full groups of Cantor minimal systems II,, Ergodic Theory Dynam. Systems, 33 (2013), 1542.  doi: 10.1017/S0143385712000399.  Google Scholar

[17]

N. Matte Bon, Subshifts with slow complexity and simple groups with the Liouville property,, Geom. Funct. Anal., 24 (2014), 1637.  doi: 10.1007/s00039-014-0293-4.  Google Scholar

[18]

M. Queffélec, Substitution Dynamical Systems-Spectral Analysis,, Lecture Notes in Mathematics, (1294).   Google Scholar

[19]

P. E. Schupp, Embeddings into simple groups,, J. London Math. Soc. (2), 13 (1976), 90.   Google Scholar

[20]

E. K. van Douwen, Measures invariant under actions of $F_2$,, Topology Appl., 34 (1990), 53.  doi: 10.1016/0166-8641(90)90089-K.  Google Scholar

[21]

Ya. Vorobets, On a substitution subshift related to the Grigorchuk group,, Tr. Mat. Inst. Steklova, 271 (2010), 319.  doi: 10.1134/S0081543810040218.  Google Scholar

[22]

Ya. Vorobets, Notes on the Schreier graphs of the Grigorchuk group,, in Dynamical Systems and Group Actions, (2012), 221.  doi: 10.1090/conm/567/11250.  Google Scholar

show all references

References:
[1]

A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle,, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25.   Google Scholar

[2]

L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups,, Tr. Mat. Inst. Steklova (Din. Sist., 231 (2000), 5.   Google Scholar

[3]

L. Bartholdi, R. I. Grigorchuk and Z. Šuniḱ, Branch groups,, in Handbook of Algebra, (2003), 989.  doi: 10.1016/S1570-7954(03)80078-5.  Google Scholar

[4]

J. Cassaigne and F. Nicolas, Factor complexity,, in Combinatorics, (2010), 163.   Google Scholar

[5]

Y. Cornulier, Groupes pleins-topologiques [d'après Matui, Juschenko, Monod,...],, Astérisque, (2012).   Google Scholar

[6]

G. Elek and N. Monod, On the topological full group of a minimal Cantor $\mathbbZ^2$-system,, Proc. Amer. Math. Soc., 141 (2013), 3549.  doi: 10.1090/S0002-9939-2013-11654-0.  Google Scholar

[7]

R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order,, preprint, (2014).   Google Scholar

[8]

A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups,, Mat. Zametki, 16 (1974), 231.   Google Scholar

[9]

W. H. Gottschalk, Almost period points with respect to transformation semi-groups,, Ann. of Math. (2), 47 (1946), 762.  doi: 10.2307/1969233.  Google Scholar

[10]

T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems,, Israel J. Math., 111 (1999), 285.  doi: 10.1007/BF02810689.  Google Scholar

[11]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means,, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939.   Google Scholar

[12]

P. Hall, On the embedding of a group in a join of given groups,, Collection of articles dedicated to the memory of Hanna Neumann, 17 (1974), 434.  doi: 10.1017/S1446788700018073.  Google Scholar

[13]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups,, Ann. of Math. (2), 178 (2013), 775.  doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[14]

V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy,, Ann. Probab., 11 (1983), 457.  doi: 10.1214/aop/1176993497.  Google Scholar

[15]

H. Matui, Some remarks on topological full groups of Cantor minimal systems,, Internat. J. Math., 17 (2006), 231.  doi: 10.1142/S0129167X06003448.  Google Scholar

[16]

H. Matui, Some remarks on topological full groups of Cantor minimal systems II,, Ergodic Theory Dynam. Systems, 33 (2013), 1542.  doi: 10.1017/S0143385712000399.  Google Scholar

[17]

N. Matte Bon, Subshifts with slow complexity and simple groups with the Liouville property,, Geom. Funct. Anal., 24 (2014), 1637.  doi: 10.1007/s00039-014-0293-4.  Google Scholar

[18]

M. Queffélec, Substitution Dynamical Systems-Spectral Analysis,, Lecture Notes in Mathematics, (1294).   Google Scholar

[19]

P. E. Schupp, Embeddings into simple groups,, J. London Math. Soc. (2), 13 (1976), 90.   Google Scholar

[20]

E. K. van Douwen, Measures invariant under actions of $F_2$,, Topology Appl., 34 (1990), 53.  doi: 10.1016/0166-8641(90)90089-K.  Google Scholar

[21]

Ya. Vorobets, On a substitution subshift related to the Grigorchuk group,, Tr. Mat. Inst. Steklova, 271 (2010), 319.  doi: 10.1134/S0081543810040218.  Google Scholar

[22]

Ya. Vorobets, Notes on the Schreier graphs of the Grigorchuk group,, in Dynamical Systems and Group Actions, (2012), 221.  doi: 10.1090/conm/567/11250.  Google Scholar

[1]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[2]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[5]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[6]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[7]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[8]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[9]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[10]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[11]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[12]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[16]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[17]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[18]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[19]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021005

[20]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]