
Previous Article
Mathematical study of the effects of travel costs on optimal dispersal in a twopatch model
 DCDSB Home
 This Issue

Next Article
Spreading speeds and traveling wave solutions in cooperative integraldifferential systems
Timeinvariant and stochastic disperserstructured matrix models: Invasion rates of fleshyfruited exotic shrubs
1.  University of Miami, Institute of Theoretical and Mathematical Ecology, Department of Biology, P.O. Box 249118, Coral Gables, FL 331240421, United States, United States 
2.  United States Department of Agriculture, Plant Protection and Quarantine, Plant Epidemiology and Risk Analysis Laboratory, 1730 Varsity Drive, Suite 300, Raleigh, NC 276065202, United States 
References:
[1] 
H. Caswell, M. G. Neubert and C. M. Hunter, Demography and dispersal: Invasion speeds and sensitivity analysis in periodic and stochastic environments,, Theoretical Ecology, 4 (2011), 407. doi: 10.1007/s120800100091z. 
[2] 
D. A. Cimprich and F. R. Moore, Gray Catbird,, The Birds of North America, 5 (1995), 1. 
[3] 
J. S. Clark, E. Macklin and L. Wood, Stages and spatial scales of recruitment limitation in southern Appalachian forests,, Ecological Monographs, 68 (1998), 213. 
[4] 
J. S. Clark, M. Silman, R. Kern, E. Macklin and J. HilleRisLambers, Seed dispersal near and far: Patterns across temperate and tropical forests,, Ecology, 80 (1999), 1475. doi: 10.2307/176541. 
[5] 
S. P. Ellner and S. J. Schreiber, Temporally variable dispersal and demography can accelerate the spread of invading species,, Theoretical Population Biology, 82 (2012), 283. doi: 10.1016/j.tpb.2012.03.005. 
[6] 
J. J. Ewel, D. S. Ojima, D. A. Karl and W. F. DeBusk, Schinus in Successional Ecosystems of Everglades National Park,, Technical Report T676, (1982). 
[7] 
R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 355. doi: 10.1111/j.14691809.1937.tb02153.x. 
[8] 
D. R. Gordon and K. P. Thomas, Florida's invasion by nonindigenous plants: history, screening, and regulation,, in Strangers in Paradise (eds. D. Simberloff, (1997), 21. 
[9] 
S. I. Higgins and D. M. Richardson, Predicting plant migration rates in a changing world: The role of longdistance dispersal,, American Naturalist, 153 (1999), 464. doi: 10.1086/303193. 
[10] 
K. M. Hodges, J. Chamberlain and B. D. Leopold, Effects of summer hunting on ranging behavior of adult raccoons in central Mississippi,, Journal of Wildlife Management, 64 (2000), 194. doi: 10.2307/3802990. 
[11] 
E. Jongejans, K. Shea, O. Skarpaas, D. Kelly and S. P. Ellner, Importance of individual and environmental variation for invasive species spread: A spatial integral projection model,, Ecology, 92 (2011), 86. doi: 10.1890/092226.1. 
[12] 
A. L. Koop, Population Dynamics and Invasion Rate of an Invasive, Tropical Understory Shrub, Ardisia Elliptica,, Ph.D dissertation, (2003). 
[13] 
A. L. Koop, Differential seed mortality among habitats limits the distribution of the invasive nonnative shrub Ardisia elliptica,, Plant Ecology, 172 (2004), 237. 
[14] 
A. L. Koop and C. C. Horvitz, Projection matrix analysis of the demography of an invasive, nonnative shrub (Ardisia elliptica),, Ecology, 86 (2005), 2661. 
[15] 
M. Kot, Discretetime travelling waves: Ecological examples,, Journal of Mathematical Biology, 30 (1992), 413. doi: 10.1007/BF00173295. 
[16] 
M. Kot, M. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms,, Ecology, 77 (1996), 2027. doi: 10.2307/2265698. 
[17] 
K. A. Langeland and K. C. Burks, Identification and Biology of NonNative Plants in Florida's Natural Areas,, University of Florida, (1998). 
[18] 
D. J. Levey and W. H. Karasov, Digestive modulation in a seasonal frugivore, the American robin (Turdus migratorius),, American Journal of Physiology, 262 (1992). 
[19] 
D. J. Levey, J. J. Tewksbury and B. M. Bolker, Modelling longdistance seed dispersal in heterogeneous landscapes,, Journal of Ecology, 96 (2008), 599. doi: 10.1111/j.13652745.2008.01401.x. 
[20] 
W. M. Lonsdale, Rates of spread of an invading species  Mimosa pigra in northern Australia,, Journal of Ecology, 81 (1993), 513. 
[21] 
P. K. Malmborg and M. F. Willson, Foraging ecology of avian frugivores and some consequences for seed dispersal in an Illinois woodlot,, The Condor, 90 (1988), 173. doi: 10.2307/1368446. 
[22] 
M. G. Neubert and H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations,, Ecology, 81 (2000), 1613. 
[23] 
I. M. Parker and S. H. Reichard, Critical issues in invasion biology for conservation science,, in Conservation Biology for the Coming Decade (eds. P. L. Fiedler and P. M. Kareiva), (1998), 283. doi: 10.1007/9781461560517_11. 
[24] 
J. H. Rappole and D. W. Warner, Ecological aspects of migrant bird behavior in Veracruz, Mexico,, in Migrant Birds in the Neotropics: Ecology, (1980), 343. 
[25] 
R. Seavey and J. Seavey, Ardisia Elliptica in Everglades National Park: An Overview Through 1993,, Unpublished Manuscript., (). 
[26] 
K. Shea and D. Kelly, Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand,, Ecological Applications, 8 (1998), 824. 
[27] 
N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice,, Oxford University Press, (1997). 
[28] 
J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. doi: 10.1093/biomet/38.12.196. 
[29] 
M. B. Soons and J. Bullock, Nonrandom seed abscission, longdistance wind dispersal and plant migration rates,, Journal of Ecology, 96 (2008), 581. doi: 10.1111/j.13652745.2008.01370.x. 
[30] 
S. Tuljapurkar, Population Dynamics in Variable Environments,, Lecture Notes in Biomathematics, (1990). doi: 10.1007/9783642516528. 
[31] 
R. P. Wunderlin, Guide to the Vascular Plants of Florida,, University Press of Florida, (1998). 
show all references
References:
[1] 
H. Caswell, M. G. Neubert and C. M. Hunter, Demography and dispersal: Invasion speeds and sensitivity analysis in periodic and stochastic environments,, Theoretical Ecology, 4 (2011), 407. doi: 10.1007/s120800100091z. 
[2] 
D. A. Cimprich and F. R. Moore, Gray Catbird,, The Birds of North America, 5 (1995), 1. 
[3] 
J. S. Clark, E. Macklin and L. Wood, Stages and spatial scales of recruitment limitation in southern Appalachian forests,, Ecological Monographs, 68 (1998), 213. 
[4] 
J. S. Clark, M. Silman, R. Kern, E. Macklin and J. HilleRisLambers, Seed dispersal near and far: Patterns across temperate and tropical forests,, Ecology, 80 (1999), 1475. doi: 10.2307/176541. 
[5] 
S. P. Ellner and S. J. Schreiber, Temporally variable dispersal and demography can accelerate the spread of invading species,, Theoretical Population Biology, 82 (2012), 283. doi: 10.1016/j.tpb.2012.03.005. 
[6] 
J. J. Ewel, D. S. Ojima, D. A. Karl and W. F. DeBusk, Schinus in Successional Ecosystems of Everglades National Park,, Technical Report T676, (1982). 
[7] 
R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 355. doi: 10.1111/j.14691809.1937.tb02153.x. 
[8] 
D. R. Gordon and K. P. Thomas, Florida's invasion by nonindigenous plants: history, screening, and regulation,, in Strangers in Paradise (eds. D. Simberloff, (1997), 21. 
[9] 
S. I. Higgins and D. M. Richardson, Predicting plant migration rates in a changing world: The role of longdistance dispersal,, American Naturalist, 153 (1999), 464. doi: 10.1086/303193. 
[10] 
K. M. Hodges, J. Chamberlain and B. D. Leopold, Effects of summer hunting on ranging behavior of adult raccoons in central Mississippi,, Journal of Wildlife Management, 64 (2000), 194. doi: 10.2307/3802990. 
[11] 
E. Jongejans, K. Shea, O. Skarpaas, D. Kelly and S. P. Ellner, Importance of individual and environmental variation for invasive species spread: A spatial integral projection model,, Ecology, 92 (2011), 86. doi: 10.1890/092226.1. 
[12] 
A. L. Koop, Population Dynamics and Invasion Rate of an Invasive, Tropical Understory Shrub, Ardisia Elliptica,, Ph.D dissertation, (2003). 
[13] 
A. L. Koop, Differential seed mortality among habitats limits the distribution of the invasive nonnative shrub Ardisia elliptica,, Plant Ecology, 172 (2004), 237. 
[14] 
A. L. Koop and C. C. Horvitz, Projection matrix analysis of the demography of an invasive, nonnative shrub (Ardisia elliptica),, Ecology, 86 (2005), 2661. 
[15] 
M. Kot, Discretetime travelling waves: Ecological examples,, Journal of Mathematical Biology, 30 (1992), 413. doi: 10.1007/BF00173295. 
[16] 
M. Kot, M. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms,, Ecology, 77 (1996), 2027. doi: 10.2307/2265698. 
[17] 
K. A. Langeland and K. C. Burks, Identification and Biology of NonNative Plants in Florida's Natural Areas,, University of Florida, (1998). 
[18] 
D. J. Levey and W. H. Karasov, Digestive modulation in a seasonal frugivore, the American robin (Turdus migratorius),, American Journal of Physiology, 262 (1992). 
[19] 
D. J. Levey, J. J. Tewksbury and B. M. Bolker, Modelling longdistance seed dispersal in heterogeneous landscapes,, Journal of Ecology, 96 (2008), 599. doi: 10.1111/j.13652745.2008.01401.x. 
[20] 
W. M. Lonsdale, Rates of spread of an invading species  Mimosa pigra in northern Australia,, Journal of Ecology, 81 (1993), 513. 
[21] 
P. K. Malmborg and M. F. Willson, Foraging ecology of avian frugivores and some consequences for seed dispersal in an Illinois woodlot,, The Condor, 90 (1988), 173. doi: 10.2307/1368446. 
[22] 
M. G. Neubert and H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations,, Ecology, 81 (2000), 1613. 
[23] 
I. M. Parker and S. H. Reichard, Critical issues in invasion biology for conservation science,, in Conservation Biology for the Coming Decade (eds. P. L. Fiedler and P. M. Kareiva), (1998), 283. doi: 10.1007/9781461560517_11. 
[24] 
J. H. Rappole and D. W. Warner, Ecological aspects of migrant bird behavior in Veracruz, Mexico,, in Migrant Birds in the Neotropics: Ecology, (1980), 343. 
[25] 
R. Seavey and J. Seavey, Ardisia Elliptica in Everglades National Park: An Overview Through 1993,, Unpublished Manuscript., (). 
[26] 
K. Shea and D. Kelly, Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand,, Ecological Applications, 8 (1998), 824. 
[27] 
N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice,, Oxford University Press, (1997). 
[28] 
J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. doi: 10.1093/biomet/38.12.196. 
[29] 
M. B. Soons and J. Bullock, Nonrandom seed abscission, longdistance wind dispersal and plant migration rates,, Journal of Ecology, 96 (2008), 581. doi: 10.1111/j.13652745.2008.01370.x. 
[30] 
S. Tuljapurkar, Population Dynamics in Variable Environments,, Lecture Notes in Biomathematics, (1990). doi: 10.1007/9783642516528. 
[31] 
R. P. Wunderlin, Guide to the Vascular Plants of Florida,, University Press of Florida, (1998). 
[1] 
Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growthharvestingdispersal order. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 22812298. doi: 10.3934/dcdsb.2012.17.2281 
[2] 
Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems  A, 2009, 25 (1) : 321342. doi: 10.3934/dcds.2009.25.321 
[3] 
WanTong Li, Li Zhang, GuoBao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 15311560. doi: 10.3934/dcds.2015.35.1531 
[4] 
Franziska Hinkelmann, Reinhard Laubenbacher. Boolean models of bistable biological systems. Discrete & Continuous Dynamical Systems  S, 2011, 4 (6) : 14431456. doi: 10.3934/dcdss.2011.4.1443 
[5] 
Jon Jacobsen, Taylor McAdam. A boundary value problem for integrodifference population models with cyclic kernels. Discrete & Continuous Dynamical Systems  B, 2014, 19 (10) : 31913207. doi: 10.3934/dcdsb.2014.19.3191 
[6] 
Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 27712788. doi: 10.3934/dcdsb.2012.17.2771 
[7] 
Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 221240. doi: 10.3934/dcdsb.2004.4.221 
[8] 
Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761775. doi: 10.3934/mbe.2013.10.761 
[9] 
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized CahnHilliard equation with biological applications. Discrete & Continuous Dynamical Systems  B, 2014, 19 (7) : 20132026. doi: 10.3934/dcdsb.2014.19.2013 
[10] 
Alfredo Lorenzi, Eugenio Sinestrari. Identifying a BVkernel in a hyperbolic integrodifferential equation. Discrete & Continuous Dynamical Systems  A, 2008, 21 (4) : 11991219. doi: 10.3934/dcds.2008.21.1199 
[11] 
Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional nonlinear biological models. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 487502. doi: 10.3934/dcdss.2019032 
[12] 
JianWen Sun, WanTong Li, ZhiCheng Wang. A nonlocal dispersal logistic equation with spatial degeneracy. Discrete & Continuous Dynamical Systems  A, 2015, 35 (7) : 32173238. doi: 10.3934/dcds.2015.35.3217 
[13] 
Carmen Cortázar, Manuel Elgueta, Jorge GarcíaMelián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 14091419. doi: 10.3934/dcds.2015.35.1409 
[14] 
Risei Kano. The existence of solutions for tumor invasion models with time and space dependent diffusion. Discrete & Continuous Dynamical Systems  S, 2014, 7 (1) : 6374. doi: 10.3934/dcdss.2014.7.63 
[15] 
Risei Kano, Akio Ito. The existence of time global solutions for tumor invasion models with constraints. Conference Publications, 2011, 2011 (Special) : 774783. doi: 10.3934/proc.2011.2011.774 
[16] 
Mary P. Hebert, Linda J. S. Allen. Disease outbreaks in plantvectorvirus models with vector aggregation and dispersal. Discrete & Continuous Dynamical Systems  B, 2016, 21 (7) : 21692191. doi: 10.3934/dcdsb.2016042 
[17] 
Chunmei Zhang, Wenxue Li, Ke Wang. Graphtheoretic approach to stability of multigroup models with dispersal. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 259280. doi: 10.3934/dcdsb.2015.20.259 
[18] 
Chris Cosner. Reactiondiffusionadvection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 17011745. doi: 10.3934/dcds.2014.34.1701 
[19] 
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483498. doi: 10.3934/mbe.2013.10.483 
[20] 
Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatiotemporal delay. Discrete & Continuous Dynamical Systems  B, 2017, 22 (4) : 17191741. doi: 10.3934/dcdsb.2017082 
2017 Impact Factor: 0.972
Tools
Metrics
Other articles
by authors
[Back to Top]