2015, 2(1): 65-87. doi: 10.3934/jdg.2015.2.65

Discrete time dynamic oligopolies with adjustment constraints

1. 

Department of Economics, University of Colorado, Boulder, CO 80309-0256, United States

2. 

Department of Economics, Society, Politics, Università degli Studi di Urbino, 61029 Urbino, Italy

3. 

Department of Applied Mathematics, University of Pécs, Pécs, 7624, Hungary

Received  October 2014 Revised  March 2015 Published  June 2015

A classical $n$-firm oligopoly is considered first with linear demand and cost functions which has a unique equilibrium. We then assume that the output levels of the firms are bounded in a sense that they are unwilling to make small changes, the output levels are bounded from above, and if the optimal output level is very small then the firms quit producing, which are realistic assumptions in real economies. In the first part of the paper, the best responses of the firms are determined and the existence of infinitely many equilibria is verified. The second part of the paper examines the global dynamics of the duopoly version of the game. In particular we study the stability of the system, the bifurcations which can occur and the basins of attraction of the existing attracting sets, as a function of the speed of adjustment parameter.
Citation: Chrystie Burr, Laura Gardini, Ferenc Szidarovszky. Discrete time dynamic oligopolies with adjustment constraints. Journal of Dynamics & Games, 2015, 2 (1) : 65-87. doi: 10.3934/jdg.2015.2.65
References:
[1]

R. Amir, Cournot oligopoly and the theory of supermodular games,, Games and Economic Behavior, 15 (1996), 132. doi: 10.1006/game.1996.0062.

[2]

R. Amir and V. E. Lambson, On the effects of entry in Cournot markets,, Review of Economic Studies, 67 (2000), 235. doi: 10.1111/1467-937X.00129.

[3]

G. I. Bischi, C. Chiarella, M. Kopel and F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations,, Springer-Verlag, (2010). doi: 10.1007/978-3-642-02106-0.

[4]

G. I. Bischi, L. Gardini and U. Merlone, Impulsivity in binary choices and the emergence of periodicity,, Discrete Dynamics in Nature and Society, (2009). doi: 10.1155/2009/407913.

[5]

A. Dal Forno, L. Gardini and U. Merlone, Ternary choices in repeated games and border collision bifurcations,, Chaos Solitons & Fractals, 45 (2012), 294. doi: 10.1016/j.chaos.2011.12.003.

[6]

R. Day, Complex Economic Dynamics,, MIT Press, (1994).

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications,, Applied Mathematical Sciences 163, (2008).

[8]

T. Bresnahan and V. Ramey, Output Fluctuations at the Plant Level,, Quaterly Journal of Economics, 109 (1994), 593. doi: 10.2307/2118415.

[9]

C. Fershtman and M. Kamien, Dynamic duopolistic competition with sticky prices,, Econometrica, 55 (1987), 1151. doi: 10.2307/1911265.

[10]

L. Gardini, I. Sushko and A. Naimzada, Growing through chaotic intervals,, Journal of Economic Theory, 143 (2008), 541. doi: 10.1016/j.jet.2008.03.005.

[11]

L. Gardini, U. Merlone and F. Tramontana, Inertia in binary choices: Continuity breaking and big-bang bifurcation points,, Journal of Economic Behavior & Organization, 80 (2011), 153. doi: 10.1016/j.jebo.2011.03.004.

[12]

W. Huang and R. Day, Chaotically switching bear and bull markets: The derivation of stock price distributions from behavioral rules,, in Nonlinear Dynamics and Evolutionary Economics (eds. R. Day, (1993).

[13]

W. Novshek, On the existence of Cournot equilibrium,, Review of Economic Studies, 52 (1985), 85. doi: 10.2307/2297471.

[14]

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems,, Physica D, 57 (1992), 39. doi: 10.1016/0167-2789(92)90087-4.

[15]

H. E. Nusse and J. A. Yorke, Border-collision bifurcation for piecewise smooth one-dimensional maps,, Int. J. Bifurcation Chaos, 5 (1995), 189. doi: 10.1142/S0218127495000156.

[16]

K. Okuguchi, Expectations and Stability in Oligopoly Models,, Springer-Verlag, (1976).

[17]

K. Okuguchi and F. Szidarovszky, The Theory of Oligopoly with Multi-product Firms,, Lecture Notes in Economics and Mathematical Systems, (1990). doi: 10.1007/978-3-662-02622-9.

[18]

T. Puu and I. Sushko (eds.), Oligopoly Dynamics, Models and Tools,, Springer Verlag, (2002).

[19]

T. Puu and I. Sushko (eds.), Business Cycle Dynamics, Models and Tools,, Springer Verlag, (2006).

[20]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The symmetric case,, Chaos, 66 (2014), 103. doi: 10.1016/j.chaos.2014.05.009.

[21]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The asymmetric Case,, Discrete Dynamics in Nature and Society, (2014). doi: 10.1155/2014/569296.

[22]

M. Simaan and T. Takayama, Game theory applied to dynamic duopoly problems with production constraint,, Automatica, 14 (1978), 161. doi: 10.1016/0005-1098(78)90022-5.

[23]

I. Sushko and L. Gardini, Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps,, Int. J. Bif. and Chaos, 20 (2010), 2045. doi: 10.1142/S0218127410026927.

[24]

I. Sushko, L. Gardini and K. Matsuyama, Superstable credit cycles and u-sequence,, Chaos Solitons & Fractals, 59 (2014), 13. doi: 10.1016/j.chaos.2013.11.006.

[25]

F. Tramontana, F. Westerhoff and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders,, J. Econ. Behav. Organ., 74 (2010), 187. doi: 10.1016/j.jebo.2010.02.008.

[26]

F. Tramontana, L. Gardini and F. Westerhoff, Heterogeneous speculators and asset price dynamics: Further results from a one-dimensional discontinuous piecewise-linear model,, Computational Economics, 38 (2011), 329. doi: 10.1007/s10614-011-9284-9.

[27]

Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems,, World Scientific, (2003).

show all references

References:
[1]

R. Amir, Cournot oligopoly and the theory of supermodular games,, Games and Economic Behavior, 15 (1996), 132. doi: 10.1006/game.1996.0062.

[2]

R. Amir and V. E. Lambson, On the effects of entry in Cournot markets,, Review of Economic Studies, 67 (2000), 235. doi: 10.1111/1467-937X.00129.

[3]

G. I. Bischi, C. Chiarella, M. Kopel and F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations,, Springer-Verlag, (2010). doi: 10.1007/978-3-642-02106-0.

[4]

G. I. Bischi, L. Gardini and U. Merlone, Impulsivity in binary choices and the emergence of periodicity,, Discrete Dynamics in Nature and Society, (2009). doi: 10.1155/2009/407913.

[5]

A. Dal Forno, L. Gardini and U. Merlone, Ternary choices in repeated games and border collision bifurcations,, Chaos Solitons & Fractals, 45 (2012), 294. doi: 10.1016/j.chaos.2011.12.003.

[6]

R. Day, Complex Economic Dynamics,, MIT Press, (1994).

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications,, Applied Mathematical Sciences 163, (2008).

[8]

T. Bresnahan and V. Ramey, Output Fluctuations at the Plant Level,, Quaterly Journal of Economics, 109 (1994), 593. doi: 10.2307/2118415.

[9]

C. Fershtman and M. Kamien, Dynamic duopolistic competition with sticky prices,, Econometrica, 55 (1987), 1151. doi: 10.2307/1911265.

[10]

L. Gardini, I. Sushko and A. Naimzada, Growing through chaotic intervals,, Journal of Economic Theory, 143 (2008), 541. doi: 10.1016/j.jet.2008.03.005.

[11]

L. Gardini, U. Merlone and F. Tramontana, Inertia in binary choices: Continuity breaking and big-bang bifurcation points,, Journal of Economic Behavior & Organization, 80 (2011), 153. doi: 10.1016/j.jebo.2011.03.004.

[12]

W. Huang and R. Day, Chaotically switching bear and bull markets: The derivation of stock price distributions from behavioral rules,, in Nonlinear Dynamics and Evolutionary Economics (eds. R. Day, (1993).

[13]

W. Novshek, On the existence of Cournot equilibrium,, Review of Economic Studies, 52 (1985), 85. doi: 10.2307/2297471.

[14]

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems,, Physica D, 57 (1992), 39. doi: 10.1016/0167-2789(92)90087-4.

[15]

H. E. Nusse and J. A. Yorke, Border-collision bifurcation for piecewise smooth one-dimensional maps,, Int. J. Bifurcation Chaos, 5 (1995), 189. doi: 10.1142/S0218127495000156.

[16]

K. Okuguchi, Expectations and Stability in Oligopoly Models,, Springer-Verlag, (1976).

[17]

K. Okuguchi and F. Szidarovszky, The Theory of Oligopoly with Multi-product Firms,, Lecture Notes in Economics and Mathematical Systems, (1990). doi: 10.1007/978-3-662-02622-9.

[18]

T. Puu and I. Sushko (eds.), Oligopoly Dynamics, Models and Tools,, Springer Verlag, (2002).

[19]

T. Puu and I. Sushko (eds.), Business Cycle Dynamics, Models and Tools,, Springer Verlag, (2006).

[20]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The symmetric case,, Chaos, 66 (2014), 103. doi: 10.1016/j.chaos.2014.05.009.

[21]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The asymmetric Case,, Discrete Dynamics in Nature and Society, (2014). doi: 10.1155/2014/569296.

[22]

M. Simaan and T. Takayama, Game theory applied to dynamic duopoly problems with production constraint,, Automatica, 14 (1978), 161. doi: 10.1016/0005-1098(78)90022-5.

[23]

I. Sushko and L. Gardini, Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps,, Int. J. Bif. and Chaos, 20 (2010), 2045. doi: 10.1142/S0218127410026927.

[24]

I. Sushko, L. Gardini and K. Matsuyama, Superstable credit cycles and u-sequence,, Chaos Solitons & Fractals, 59 (2014), 13. doi: 10.1016/j.chaos.2013.11.006.

[25]

F. Tramontana, F. Westerhoff and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders,, J. Econ. Behav. Organ., 74 (2010), 187. doi: 10.1016/j.jebo.2010.02.008.

[26]

F. Tramontana, L. Gardini and F. Westerhoff, Heterogeneous speculators and asset price dynamics: Further results from a one-dimensional discontinuous piecewise-linear model,, Computational Economics, 38 (2011), 329. doi: 10.1007/s10614-011-9284-9.

[27]

Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems,, World Scientific, (2003).

[1]

Chloe A. Fletcher, Jason S. Howell. Dynamic modeling of nontargeted and targeted advertising strategies in an oligopoly. Journal of Dynamics & Games, 2017, 4 (2) : 97-124. doi: 10.3934/jdg.2017007

[2]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[3]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[4]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[5]

Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361

[6]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[7]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[8]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[9]

Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209

[10]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[11]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[12]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 941-973. doi: 10.3934/dcds.2011.31.941

[13]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117

[14]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[15]

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano. Properties of the steady state distribution of electrons in semiconductors. Kinetic & Related Models, 2011, 4 (3) : 809-829. doi: 10.3934/krm.2011.4.809

[16]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[17]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667

[18]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[19]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[20]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (4)

[Back to Top]