2016, 36(1): 63-95. doi: 10.3934/dcds.2016.36.63

The general recombination equation in continuous time and its solution

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany, Germany

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  August 2014 Revised  March 2015 Published  June 2015

The process of recombination in population genetics, in its deterministic limit, leads to a nonlinear ODE in the Banach space of finite measures on a locally compact product space. It has an embedding into a larger family of nonlinear ODEs that permits a systematic analysis with lattice-theoretic methods for general partitions of finite sets. We discuss this type of system, reduce it to an equivalent finite-dimensional nonlinear problem, and establish a connection with an ancestral partitioning process, backward in time. We solve the finite-dimensional problem recursively for generic sets of parameters and briefly discuss the singular cases, and how to extend the solution to this situation.
Citation: Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63
References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997). doi: 10.1007/978-3-642-59101-3.

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.

[4]

E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations,, Bull. Math. Biol., 70 (2008), 603. doi: 10.1007/s11538-007-9270-5.

[5]

M. Baake, Recombination semigroups on measure spaces,, Monatsh. Math., 146 (2005), 267. doi: 10.1007/s00605-005-0326-z.

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3. doi: 10.4153/CJM-2003-001-0.

[7]

E. Baake and T. Hustedt, Moment closure in a Moran model with recombination,, Markov Proc. Rel. Fields, 17 (2011), 429.

[8]

E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees,, J. Math. Biol., 68 (2014), 1371. doi: 10.1007/s00285-013-0662-x.

[9]

M. Baake and R. Speicher, in, preparation., ().

[10]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.

[11]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).

[12]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1. doi: 10.1006/tpbi.2000.1471.

[13]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115. doi: 10.1016/S0024-3795(01)00586-9.

[14]

R. Durrett, Probability Models for DNA Sequence Evolution,, 2nd ed., (2008). doi: 10.1007/978-0-387-78168-6.

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, ().

[16]

W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems,, Genetics, 87 (1977), 807.

[17]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. I, (1986). doi: 10.1063/1.3062516.

[18]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25. doi: 10.1214/aoms/1177731313.

[19]

Y. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992). doi: 10.1007/978-3-642-76211-6.

[20]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103. doi: 10.1007/s002850050143.

[21]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).

[22]

O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time,, J. Math. Biol., 49 (2004), 201. doi: 10.1007/s00285-004-0273-7.

[23]

N. J. A. Sloane, The On-line encyclopedia of integer sequences,, Lecture Notes in Computer Science, 4573 (2007). doi: 10.1007/978-3-540-73086-6_12.

[24]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,, IEEE Trans. Automatic Control, 46 (2001), 1028. doi: 10.1109/9.935056.

[25]

E. Spiegel and C. J. O'Donnell, Incidence Algebras,, Marcel Dekker, (1997).

[26]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727. doi: 10.1007/s00285-009-0277-4.

show all references

References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997). doi: 10.1007/978-3-642-59101-3.

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.

[4]

E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations,, Bull. Math. Biol., 70 (2008), 603. doi: 10.1007/s11538-007-9270-5.

[5]

M. Baake, Recombination semigroups on measure spaces,, Monatsh. Math., 146 (2005), 267. doi: 10.1007/s00605-005-0326-z.

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3. doi: 10.4153/CJM-2003-001-0.

[7]

E. Baake and T. Hustedt, Moment closure in a Moran model with recombination,, Markov Proc. Rel. Fields, 17 (2011), 429.

[8]

E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees,, J. Math. Biol., 68 (2014), 1371. doi: 10.1007/s00285-013-0662-x.

[9]

M. Baake and R. Speicher, in, preparation., ().

[10]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.

[11]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).

[12]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1. doi: 10.1006/tpbi.2000.1471.

[13]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115. doi: 10.1016/S0024-3795(01)00586-9.

[14]

R. Durrett, Probability Models for DNA Sequence Evolution,, 2nd ed., (2008). doi: 10.1007/978-0-387-78168-6.

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, ().

[16]

W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems,, Genetics, 87 (1977), 807.

[17]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. I, (1986). doi: 10.1063/1.3062516.

[18]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25. doi: 10.1214/aoms/1177731313.

[19]

Y. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992). doi: 10.1007/978-3-642-76211-6.

[20]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103. doi: 10.1007/s002850050143.

[21]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).

[22]

O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time,, J. Math. Biol., 49 (2004), 201. doi: 10.1007/s00285-004-0273-7.

[23]

N. J. A. Sloane, The On-line encyclopedia of integer sequences,, Lecture Notes in Computer Science, 4573 (2007). doi: 10.1007/978-3-540-73086-6_12.

[24]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,, IEEE Trans. Automatic Control, 46 (2001), 1028. doi: 10.1109/9.935056.

[25]

E. Spiegel and C. J. O'Donnell, Incidence Algebras,, Marcel Dekker, (1997).

[26]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727. doi: 10.1007/s00285-009-0277-4.

[1]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[2]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[3]

Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821

[4]

Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617

[5]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

[6]

Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365

[7]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[8]

Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088

[9]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[10]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[11]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[12]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[13]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

[14]

Vitali Liskevich, Igor I. Skrypnik, Zeev Sobol. Estimates of solutions for the parabolic $p$-Laplacian equation with measure via parabolic nonlinear potentials. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1731-1744. doi: 10.3934/cpaa.2013.12.1731

[15]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[16]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[17]

Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804

[18]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[19]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[20]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]