January  2016, 36(1): 63-95. doi: 10.3934/dcds.2016.36.63

The general recombination equation in continuous time and its solution

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany, Germany

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  August 2014 Revised  March 2015 Published  June 2015

The process of recombination in population genetics, in its deterministic limit, leads to a nonlinear ODE in the Banach space of finite measures on a locally compact product space. It has an embedding into a larger family of nonlinear ODEs that permits a systematic analysis with lattice-theoretic methods for general partitions of finite sets. We discuss this type of system, reduce it to an equivalent finite-dimensional nonlinear problem, and establish a connection with an ancestral partitioning process, backward in time. We solve the finite-dimensional problem recursively for generic sets of parameters and briefly discuss the singular cases, and how to extend the solution to this situation.
Citation: Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63
References:
[1]

Springer, Berlin, 1997. doi: 10.1007/978-3-642-59101-3.  Google Scholar

[2]

2nd ed., de Gryuter, Berlin, 1995. Google Scholar

[3]

in: Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010, Vol. VI, ed. J. Bhatia, Hindustan Book Agency, New Delhi (2010), 3037-3053.  Google Scholar

[4]

Bull. Math. Biol., 70 (2008), 603-624; arXiv:q-bio/0612024. doi: 10.1007/s11538-007-9270-5.  Google Scholar

[5]

Monatsh. Math., 146 (2005), 267-278 and 150 (2007), 83-84 (Addendum); arXiv:math.CA/0506099. doi: 10.1007/s00605-005-0326-z.  Google Scholar

[6]

Can. J. Math., 55 (2003), 3-41 and 60 (2008), 264-265 (Erratum); arXiv:math.CA/0210422. doi: 10.4153/CJM-2003-001-0.  Google Scholar

[7]

Markov Proc. Rel. Fields, 17 (2011), 429-446; arXiv:1105.0793.  Google Scholar

[8]

J. Math. Biol., 68 (2014), 1371-1402; arXiv:1206.0950. doi: 10.1007/s00285-013-0662-x.  Google Scholar

[9]

M. Baake and R. Speicher, in, preparation., ().   Google Scholar

[10]

Ann. Human Gen., 18 (1954), 311-317.  Google Scholar

[11]

Wiley, Chichester, 2000.  Google Scholar

[12]

Theor. Popul. Biol., 58 (2000), 1-20. doi: 10.1006/tpbi.2000.1471.  Google Scholar

[13]

Lin. Alg. Appl., 348 (2002), 115-137. doi: 10.1016/S0024-3795(01)00586-9.  Google Scholar

[14]

2nd ed., Springer, New York, 2008. doi: 10.1007/978-0-387-78168-6.  Google Scholar

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, ().   Google Scholar

[16]

Genetics, 87 (1977), 807-819.  Google Scholar

[17]

Vol. I, 3rd ed., Wiley, New York, 1986. doi: 10.1063/1.3062516.  Google Scholar

[18]

Ann. Math. Stat., 15 (1944), 25-57. doi: 10.1214/aoms/1177731313.  Google Scholar

[19]

Springer, Berlin, 1992. doi: 10.1007/978-3-642-76211-6.  Google Scholar

[20]

J. Math. Biol., 38 (1999), 103-133. doi: 10.1007/s002850050143.  Google Scholar

[21]

Cambridge University Press, Cambridge, 1998, reprint, 2005.  Google Scholar

[22]

J. Math. Biol., 49 (2004), 201-226; arXiv:math.DS/0402351. doi: 10.1007/s00285-004-0273-7.  Google Scholar

[23]

Lecture Notes in Computer Science, 4573 (2007), p 130, https://oeis.org/ doi: 10.1007/978-3-540-73086-6_12.  Google Scholar

[24]

IEEE Trans. Automatic Control, 46 (2001), 1028-1047; arXiv:math.DS/0002113. doi: 10.1109/9.935056.  Google Scholar

[25]

Marcel Dekker, New York, 1997.  Google Scholar

[26]

J. Math. Biol., 60 (2010), 727-760; arXiv:0906.1678. doi: 10.1007/s00285-009-0277-4.  Google Scholar

show all references

References:
[1]

Springer, Berlin, 1997. doi: 10.1007/978-3-642-59101-3.  Google Scholar

[2]

2nd ed., de Gryuter, Berlin, 1995. Google Scholar

[3]

in: Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010, Vol. VI, ed. J. Bhatia, Hindustan Book Agency, New Delhi (2010), 3037-3053.  Google Scholar

[4]

Bull. Math. Biol., 70 (2008), 603-624; arXiv:q-bio/0612024. doi: 10.1007/s11538-007-9270-5.  Google Scholar

[5]

Monatsh. Math., 146 (2005), 267-278 and 150 (2007), 83-84 (Addendum); arXiv:math.CA/0506099. doi: 10.1007/s00605-005-0326-z.  Google Scholar

[6]

Can. J. Math., 55 (2003), 3-41 and 60 (2008), 264-265 (Erratum); arXiv:math.CA/0210422. doi: 10.4153/CJM-2003-001-0.  Google Scholar

[7]

Markov Proc. Rel. Fields, 17 (2011), 429-446; arXiv:1105.0793.  Google Scholar

[8]

J. Math. Biol., 68 (2014), 1371-1402; arXiv:1206.0950. doi: 10.1007/s00285-013-0662-x.  Google Scholar

[9]

M. Baake and R. Speicher, in, preparation., ().   Google Scholar

[10]

Ann. Human Gen., 18 (1954), 311-317.  Google Scholar

[11]

Wiley, Chichester, 2000.  Google Scholar

[12]

Theor. Popul. Biol., 58 (2000), 1-20. doi: 10.1006/tpbi.2000.1471.  Google Scholar

[13]

Lin. Alg. Appl., 348 (2002), 115-137. doi: 10.1016/S0024-3795(01)00586-9.  Google Scholar

[14]

2nd ed., Springer, New York, 2008. doi: 10.1007/978-0-387-78168-6.  Google Scholar

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, ().   Google Scholar

[16]

Genetics, 87 (1977), 807-819.  Google Scholar

[17]

Vol. I, 3rd ed., Wiley, New York, 1986. doi: 10.1063/1.3062516.  Google Scholar

[18]

Ann. Math. Stat., 15 (1944), 25-57. doi: 10.1214/aoms/1177731313.  Google Scholar

[19]

Springer, Berlin, 1992. doi: 10.1007/978-3-642-76211-6.  Google Scholar

[20]

J. Math. Biol., 38 (1999), 103-133. doi: 10.1007/s002850050143.  Google Scholar

[21]

Cambridge University Press, Cambridge, 1998, reprint, 2005.  Google Scholar

[22]

J. Math. Biol., 49 (2004), 201-226; arXiv:math.DS/0402351. doi: 10.1007/s00285-004-0273-7.  Google Scholar

[23]

Lecture Notes in Computer Science, 4573 (2007), p 130, https://oeis.org/ doi: 10.1007/978-3-540-73086-6_12.  Google Scholar

[24]

IEEE Trans. Automatic Control, 46 (2001), 1028-1047; arXiv:math.DS/0002113. doi: 10.1109/9.935056.  Google Scholar

[25]

Marcel Dekker, New York, 1997.  Google Scholar

[26]

J. Math. Biol., 60 (2010), 727-760; arXiv:0906.1678. doi: 10.1007/s00285-009-0277-4.  Google Scholar

[1]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[2]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[3]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[4]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[7]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[8]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[9]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[10]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[11]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[12]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[13]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[14]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[15]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[16]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[17]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[18]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[20]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]