-
Previous Article
Invariance entropy of hyperbolic control sets
- DCDS Home
- This Issue
-
Next Article
The structure of dendrites constructed by pointwise P-expansive maps on the unit interval
The general recombination equation in continuous time and its solution
1. | Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany, Germany |
2. | Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld |
References:
[1] |
M. Aigner, Combinatorial Theory, reprint, Springer, Berlin, 1997.
doi: 10.1007/978-3-642-59101-3. |
[2] |
H. Amann, Gewöhnliche Differentialgleichungen, 2nd ed., de Gryuter, Berlin, 1995. |
[3] |
E. Baake, Deterministic and stochastic aspects of single-crossover recombination, in: Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010, Vol. VI, ed. J. Bhatia, Hindustan Book Agency, New Delhi (2010), 3037-3053. |
[4] |
E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations, Bull. Math. Biol., 70 (2008), 603-624; arXiv:q-bio/0612024.
doi: 10.1007/s11538-007-9270-5. |
[5] |
M. Baake, Recombination semigroups on measure spaces, Monatsh. Math., 146 (2005), 267-278 and 150 (2007), 83-84 (Addendum); arXiv:math.CA/0506099.
doi: 10.1007/s00605-005-0326-z. |
[6] |
M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection, Can. J. Math., 55 (2003), 3-41 and 60 (2008), 264-265 (Erratum); arXiv:math.CA/0210422.
doi: 10.4153/CJM-2003-001-0. |
[7] |
E. Baake and T. Hustedt, Moment closure in a Moran model with recombination, Markov Proc. Rel. Fields, 17 (2011), 429-446; arXiv:1105.0793. |
[8] |
E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees, J. Math. Biol., 68 (2014), 1371-1402; arXiv:1206.0950.
doi: 10.1007/s00285-013-0662-x. |
[9] | |
[10] |
J. H. Bennett, On the theory of random mating, Ann. Human Gen., 18 (1954), 311-317. |
[11] |
R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation, Wiley, Chichester, 2000. |
[12] |
K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components, Theor. Popul. Biol., 58 (2000), 1-20.
doi: 10.1006/tpbi.2000.1471. |
[13] |
K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics, Lin. Alg. Appl., 348 (2002), 115-137.
doi: 10.1016/S0024-3795(01)00586-9. |
[14] |
R. Durrett, Probability Models for DNA Sequence Evolution, 2nd ed., Springer, New York, 2008.
doi: 10.1007/978-0-387-78168-6. |
[15] |
M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination, submitted, preprint arXiv:1502.05194. |
[16] |
W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems, Genetics, 87 (1977), 807-819. |
[17] |
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., Wiley, New York, 1986.
doi: 10.1063/1.3062516. |
[18] |
H. Geiringer, On the probability theory of linkage in Mendelian heredity, Ann. Math. Stat., 15 (1944), 25-57.
doi: 10.1214/aoms/1177731313. |
[19] |
Y. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992.
doi: 10.1007/978-3-642-76211-6. |
[20] |
T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection, J. Math. Biol., 38 (1999), 103-133.
doi: 10.1007/s002850050143. |
[21] |
J. R. Norris, Markov Chains, Cambridge University Press, Cambridge, 1998, reprint, 2005. |
[22] |
O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time, J. Math. Biol., 49 (2004), 201-226; arXiv:math.DS/0402351.
doi: 10.1007/s00285-004-0273-7. |
[23] |
N. J. A. Sloane, The On-line encyclopedia of integer sequences, Lecture Notes in Computer Science, 4573 (2007), p 130, https://oeis.org/
doi: 10.1007/978-3-540-73086-6_12. |
[24] |
E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automatic Control, 46 (2001), 1028-1047; arXiv:math.DS/0002113.
doi: 10.1109/9.935056. |
[25] |
E. Spiegel and C. J. O'Donnell, Incidence Algebras, Marcel Dekker, New York, 1997. |
[26] |
U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time, J. Math. Biol., 60 (2010), 727-760; arXiv:0906.1678.
doi: 10.1007/s00285-009-0277-4. |
show all references
References:
[1] |
M. Aigner, Combinatorial Theory, reprint, Springer, Berlin, 1997.
doi: 10.1007/978-3-642-59101-3. |
[2] |
H. Amann, Gewöhnliche Differentialgleichungen, 2nd ed., de Gryuter, Berlin, 1995. |
[3] |
E. Baake, Deterministic and stochastic aspects of single-crossover recombination, in: Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010, Vol. VI, ed. J. Bhatia, Hindustan Book Agency, New Delhi (2010), 3037-3053. |
[4] |
E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations, Bull. Math. Biol., 70 (2008), 603-624; arXiv:q-bio/0612024.
doi: 10.1007/s11538-007-9270-5. |
[5] |
M. Baake, Recombination semigroups on measure spaces, Monatsh. Math., 146 (2005), 267-278 and 150 (2007), 83-84 (Addendum); arXiv:math.CA/0506099.
doi: 10.1007/s00605-005-0326-z. |
[6] |
M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection, Can. J. Math., 55 (2003), 3-41 and 60 (2008), 264-265 (Erratum); arXiv:math.CA/0210422.
doi: 10.4153/CJM-2003-001-0. |
[7] |
E. Baake and T. Hustedt, Moment closure in a Moran model with recombination, Markov Proc. Rel. Fields, 17 (2011), 429-446; arXiv:1105.0793. |
[8] |
E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees, J. Math. Biol., 68 (2014), 1371-1402; arXiv:1206.0950.
doi: 10.1007/s00285-013-0662-x. |
[9] | |
[10] |
J. H. Bennett, On the theory of random mating, Ann. Human Gen., 18 (1954), 311-317. |
[11] |
R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation, Wiley, Chichester, 2000. |
[12] |
K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components, Theor. Popul. Biol., 58 (2000), 1-20.
doi: 10.1006/tpbi.2000.1471. |
[13] |
K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics, Lin. Alg. Appl., 348 (2002), 115-137.
doi: 10.1016/S0024-3795(01)00586-9. |
[14] |
R. Durrett, Probability Models for DNA Sequence Evolution, 2nd ed., Springer, New York, 2008.
doi: 10.1007/978-0-387-78168-6. |
[15] |
M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination, submitted, preprint arXiv:1502.05194. |
[16] |
W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems, Genetics, 87 (1977), 807-819. |
[17] |
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., Wiley, New York, 1986.
doi: 10.1063/1.3062516. |
[18] |
H. Geiringer, On the probability theory of linkage in Mendelian heredity, Ann. Math. Stat., 15 (1944), 25-57.
doi: 10.1214/aoms/1177731313. |
[19] |
Y. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992.
doi: 10.1007/978-3-642-76211-6. |
[20] |
T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection, J. Math. Biol., 38 (1999), 103-133.
doi: 10.1007/s002850050143. |
[21] |
J. R. Norris, Markov Chains, Cambridge University Press, Cambridge, 1998, reprint, 2005. |
[22] |
O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time, J. Math. Biol., 49 (2004), 201-226; arXiv:math.DS/0402351.
doi: 10.1007/s00285-004-0273-7. |
[23] |
N. J. A. Sloane, The On-line encyclopedia of integer sequences, Lecture Notes in Computer Science, 4573 (2007), p 130, https://oeis.org/
doi: 10.1007/978-3-540-73086-6_12. |
[24] |
E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automatic Control, 46 (2001), 1028-1047; arXiv:math.DS/0002113.
doi: 10.1109/9.935056. |
[25] |
E. Spiegel and C. J. O'Donnell, Incidence Algebras, Marcel Dekker, New York, 1997. |
[26] |
U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time, J. Math. Biol., 60 (2010), 727-760; arXiv:0906.1678.
doi: 10.1007/s00285-009-0277-4. |
[1] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[2] |
Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233 |
[3] |
Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 |
[4] |
Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269 |
[5] |
Maria Michaela Porzio, Flavia Smarrazzo, Alberto Tesei. Radon measure-valued solutions of unsteady filtration equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022040 |
[6] |
Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821 |
[7] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[8] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[9] |
Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021307 |
[10] |
Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617 |
[11] |
Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643 |
[12] |
Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365 |
[13] |
Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088 |
[14] |
Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467 |
[15] |
Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883 |
[16] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[17] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[18] |
Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1085-1102. doi: 10.3934/dcdss.2021092 |
[19] |
Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic and Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117 |
[20] |
Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 511-528. doi: 10.3934/dcdsb.2018184 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]