2016, 36(1): 451-467. doi: 10.3934/dcds.2016.36.451

Eliminating restrictions of time-delayed feedback control using equivariance

1. 

Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany, Germany

Received  June 2014 Revised  May 2015 Published  June 2015

Pyragas control is a widely used time-delayed feedback control for the stabilization of periodic orbits in dynamical systems. In this paper we investigate how we can use equivariance to eliminate restrictions of Pyragas control, both to select periodic orbits for stabilization by their spatio-temporal pattern and to render Pyragas control possible at all for those orbits. Another important aspect is the optimization of equivariant Pyragas control, i.e. to construct larger control regions. The ring of $n$ identical Stuart-Landau oscillators coupled diffusively in a bidirectional ring serves as our model.
Citation: Isabelle Schneider, Matthias Bosewitz. Eliminating restrictions of time-delayed feedback control using equivariance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 451-467. doi: 10.3934/dcds.2016.36.451
References:
[1]

M. Bosewitz, Stabilisierung gekoppelter Oszillatoren durch verzögerte Rückkopplungs-kontrolle,, (German) [Stabilization of coupled oscillators by delayed feedback-control] Bachelor Thesis, (2013).

[2]

K. Bubolz, Stabilisierung periodischer Orbits im System zweier gekoppelter Oszillatoren durch zeitverzögerte Rückkopplungskontrolle,, (German) [Stabilization of periodic orbits in a system of two coupled oscillators by time-delayed feedback-control] Bachelor Thesis, (2013).

[3]

B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry,, Lect. Notes Math. 1309, 1309 (1988).

[4]

B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd number limitation of time-delayed feedback control,, Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.114101.

[5]

B. Fiedler, V. Flunkert, P. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems,, Phil. Trans. R. Soc. A, 368 (2010), 319. doi: 10.1098/rsta.2009.0232.

[6]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis,, Applied Mathematical Sciences Vol. 110, 110 (1995). doi: 10.1007/978-1-4612-4206-2.

[7]

M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and Groups in Bifurcation Theory,, Vol. 2. AMS 69, 69 (1988). doi: 10.1007/978-1-4612-4574-2.

[8]

M. Golubitsky and I. Stewart, The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,, Progress in Mathematics, 200 (2002). doi: 10.1007/978-3-0348-8167-8.

[9]

C. M. Postlethwaite, G. Brown and M. Silber, Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems,, Phil. Trans. R. Soc. A, 371 (2013). doi: 10.1098/rsta.2012.0467.

[10]

K. Pyragas, Continuous control of chaos by self-controlling feedback,, Phys. Lett. A, 170 (1992), 421.

[11]

K. Pyragas, A twenty-year review of time-delay feedback control and recent developments,, in International Symposium on Nonlinear Theory and its Applications, (2012), 683. doi: 10.15248/proc.1.683.

[12]

I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation,, Phil. Trans. R. Soc. A, 371 (2013). doi: 10.1098/rsta.2012.0472.

[13]

I. Schneider, Equivariant Pyragas Control,, Master Thesis, (2014).

show all references

References:
[1]

M. Bosewitz, Stabilisierung gekoppelter Oszillatoren durch verzögerte Rückkopplungs-kontrolle,, (German) [Stabilization of coupled oscillators by delayed feedback-control] Bachelor Thesis, (2013).

[2]

K. Bubolz, Stabilisierung periodischer Orbits im System zweier gekoppelter Oszillatoren durch zeitverzögerte Rückkopplungskontrolle,, (German) [Stabilization of periodic orbits in a system of two coupled oscillators by time-delayed feedback-control] Bachelor Thesis, (2013).

[3]

B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry,, Lect. Notes Math. 1309, 1309 (1988).

[4]

B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd number limitation of time-delayed feedback control,, Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.114101.

[5]

B. Fiedler, V. Flunkert, P. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems,, Phil. Trans. R. Soc. A, 368 (2010), 319. doi: 10.1098/rsta.2009.0232.

[6]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis,, Applied Mathematical Sciences Vol. 110, 110 (1995). doi: 10.1007/978-1-4612-4206-2.

[7]

M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and Groups in Bifurcation Theory,, Vol. 2. AMS 69, 69 (1988). doi: 10.1007/978-1-4612-4574-2.

[8]

M. Golubitsky and I. Stewart, The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,, Progress in Mathematics, 200 (2002). doi: 10.1007/978-3-0348-8167-8.

[9]

C. M. Postlethwaite, G. Brown and M. Silber, Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems,, Phil. Trans. R. Soc. A, 371 (2013). doi: 10.1098/rsta.2012.0467.

[10]

K. Pyragas, Continuous control of chaos by self-controlling feedback,, Phys. Lett. A, 170 (1992), 421.

[11]

K. Pyragas, A twenty-year review of time-delay feedback control and recent developments,, in International Symposium on Nonlinear Theory and its Applications, (2012), 683. doi: 10.15248/proc.1.683.

[12]

I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation,, Phil. Trans. R. Soc. A, 371 (2013). doi: 10.1098/rsta.2012.0472.

[13]

I. Schneider, Equivariant Pyragas Control,, Master Thesis, (2014).

[1]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[2]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[3]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii. Restrictions to the use of time-delayed feedback control in symmetric settings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 543-556. doi: 10.3934/dcdsb.2017207

[4]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2019-2034. doi: 10.3934/dcdss.2019130

[5]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[6]

Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699

[7]

Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo. Complex spatio-temporal features in meg data. Mathematical Biosciences & Engineering, 2006, 3 (4) : 697-716. doi: 10.3934/mbe.2006.3.697

[8]

Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems & Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211

[9]

Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao. Spatio-temporal keywords queries in HBase. Big Data & Information Analytics, 2016, 1 (1) : 81-91. doi: 10.3934/bdia.2016.1.81

[10]

Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055

[11]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[12]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[13]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[14]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[15]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[16]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[17]

Raimund BÜrger, Gerardo Chowell, Elvis GavilÁn, Pep Mulet, Luis M. Villada. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences & Engineering, 2018, 15 (1) : 95-123. doi: 10.3934/mbe.2018004

[18]

Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513

[19]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[20]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]