-
Previous Article
Analyzing human-swarm interactions using control Lyapunov functions and optimal control
- NHM Home
- This Issue
-
Next Article
Keep right or left? Towards a cognitive-mathematical model for pedestrians
Time-delayed follow-the-leader model for pedestrians walking in line
1. | Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse; F-31062 Toulouse, France, France |
2. | Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China |
3. | INRIA Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes, France |
4. | Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy |
5. | Laboratoire de Physique Théorique, Université Paris Sud, btiment 210, 91405 Orsay cedex |
6. | Golaem S.A.S., Bâtiment Germanium, 80 avenue des Buttes de Coësmes, 35 700 Rennes, France |
7. | Imperial College London, South Kensington Campus, London SW7 2AZ |
References:
[1] |
C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heter. Media., 6 (2011), 351-381.
doi: 10.3934/nhm.2011.6.351. |
[2] |
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.
doi: 10.1137/S0036139900380955. |
[3] |
R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York, 1963. |
[4] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.
doi: 10.1142/S0218202508003054. |
[5] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463.
doi: 10.1137/090746677. |
[6] |
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423.
doi: 10.3934/nhm.2011.6.401. |
[7] |
C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525.
doi: 10.1016/S0378-4371(01)00141-8. |
[8] |
R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184.
doi: 10.1287/opre.6.2.165. |
[9] |
M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111.
doi: 10.1103/PhysRevE.82.046111. |
[10] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.
doi: 10.1002/mma.624. |
[11] |
V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247.
doi: 10.1142/S0218202508003017. |
[12] |
D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567.
doi: 10.1287/opre.9.4.545. |
[13] |
S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187.
doi: 10.1145/1599470.1599494. |
[14] |
P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.
doi: 10.1007/s10955-013-0805-x. |
[15] |
P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.
doi: 10.3934/krm.2013.6.809. |
[16] |
P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319.
doi: 10.1016/j.jcp.2012.11.033. |
[17] |
M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362.
doi: 10.1016/j.jde.2010.10.015. |
[18] |
D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310.
doi: 10.1002/bs.3830360405. |
[19] |
D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415. |
[20] |
D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286.
doi: 10.1103/PhysRevE.51.4282. |
[21] |
D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics (ed. F. Schweitzer), Gordon and Breach, London, 1997, 569-577. |
[22] |
L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974), 509-515.
doi: 10.1016/0041-1647(74)90027-6. |
[23] |
S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172.
doi: 10.1002/oca.727. |
[24] |
W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006), 288-299.
doi: 10.1016/j.robot.2005.11.004. |
[25] |
L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141.
doi: 10.1016/j.trb.2008.06.003. |
[26] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7. |
[27] |
R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[28] |
A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111. |
[29] |
A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111. |
[30] |
D. Jezbera, D. Kordek, J. Kříž, Petr Šeba and P. Šroll, Walkers on the circle, J. Stat. Mech. Theory Exp., 2010 (2010), L01001.
doi: 10.1088/1742-5468/2010/01/L01001. |
[31] |
Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635.
doi: 10.1016/j.physa.2010.05.003. |
[32] |
A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dynamics, Phys. Rev. E, 80 (2009), 026120.
doi: 10.1103/PhysRevE.80.026120. |
[33] |
S. Lemercier, A. Jelić, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498.
doi: 10.1111/j.1467-8659.2012.03028.x. |
[34] |
S. Lemercier, M. Moreau, M. Moussaïd, G. Theraulaz, S. Donikian and J. Pettré, Reconstructing motion capture data for human crowd study, in Motion in Games, Lecture Notes in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365-376.
doi: 10.1007/978-3-642-25090-3_31. |
[35] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519.
doi: 10.3934/nhm.2011.6.485. |
[36] |
M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedestrian Crowds, PLoS Comput. Biol., 8 (2012), e1002442. |
[37] |
M. Moussaïd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888. |
[38] |
K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732. |
[39] |
J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, in SIGGRAPH'10, 29 (2010), p123.
doi: 10.1145/1833349.1778860. |
[40] |
S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Eurographics, 26 (2007), 665-674.
doi: 10.1111/j.1467-8659.2007.01090.x. |
[41] |
J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189-198. |
[42] |
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.
doi: 10.1007/s00161-009-0100-x. |
[43] |
L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 95-110. |
[44] |
C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference, San Jose, California, 1999, 763-782. |
[45] |
A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. Theory Exp., 2005 (2005), P10002.
doi: 10.1088/1742-5468/2005/10/P10002. |
[46] |
A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368 (2006), 232-238.
doi: 10.1016/j.physa.2005.11.052. |
[47] |
J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294. |
[48] |
J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2012 (2012), P02002.
doi: 10.1088/1742-5468/2012/02/P02002. |
show all references
References:
[1] |
C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heter. Media., 6 (2011), 351-381.
doi: 10.3934/nhm.2011.6.351. |
[2] |
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.
doi: 10.1137/S0036139900380955. |
[3] |
R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York, 1963. |
[4] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.
doi: 10.1142/S0218202508003054. |
[5] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463.
doi: 10.1137/090746677. |
[6] |
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423.
doi: 10.3934/nhm.2011.6.401. |
[7] |
C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525.
doi: 10.1016/S0378-4371(01)00141-8. |
[8] |
R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184.
doi: 10.1287/opre.6.2.165. |
[9] |
M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111.
doi: 10.1103/PhysRevE.82.046111. |
[10] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.
doi: 10.1002/mma.624. |
[11] |
V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247.
doi: 10.1142/S0218202508003017. |
[12] |
D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567.
doi: 10.1287/opre.9.4.545. |
[13] |
S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187.
doi: 10.1145/1599470.1599494. |
[14] |
P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.
doi: 10.1007/s10955-013-0805-x. |
[15] |
P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.
doi: 10.3934/krm.2013.6.809. |
[16] |
P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319.
doi: 10.1016/j.jcp.2012.11.033. |
[17] |
M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362.
doi: 10.1016/j.jde.2010.10.015. |
[18] |
D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310.
doi: 10.1002/bs.3830360405. |
[19] |
D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415. |
[20] |
D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286.
doi: 10.1103/PhysRevE.51.4282. |
[21] |
D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics (ed. F. Schweitzer), Gordon and Breach, London, 1997, 569-577. |
[22] |
L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974), 509-515.
doi: 10.1016/0041-1647(74)90027-6. |
[23] |
S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172.
doi: 10.1002/oca.727. |
[24] |
W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006), 288-299.
doi: 10.1016/j.robot.2005.11.004. |
[25] |
L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141.
doi: 10.1016/j.trb.2008.06.003. |
[26] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7. |
[27] |
R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[28] |
A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111. |
[29] |
A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111. |
[30] |
D. Jezbera, D. Kordek, J. Kříž, Petr Šeba and P. Šroll, Walkers on the circle, J. Stat. Mech. Theory Exp., 2010 (2010), L01001.
doi: 10.1088/1742-5468/2010/01/L01001. |
[31] |
Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635.
doi: 10.1016/j.physa.2010.05.003. |
[32] |
A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dynamics, Phys. Rev. E, 80 (2009), 026120.
doi: 10.1103/PhysRevE.80.026120. |
[33] |
S. Lemercier, A. Jelić, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498.
doi: 10.1111/j.1467-8659.2012.03028.x. |
[34] |
S. Lemercier, M. Moreau, M. Moussaïd, G. Theraulaz, S. Donikian and J. Pettré, Reconstructing motion capture data for human crowd study, in Motion in Games, Lecture Notes in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365-376.
doi: 10.1007/978-3-642-25090-3_31. |
[35] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519.
doi: 10.3934/nhm.2011.6.485. |
[36] |
M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedestrian Crowds, PLoS Comput. Biol., 8 (2012), e1002442. |
[37] |
M. Moussaïd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888. |
[38] |
K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732. |
[39] |
J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, in SIGGRAPH'10, 29 (2010), p123.
doi: 10.1145/1833349.1778860. |
[40] |
S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Eurographics, 26 (2007), 665-674.
doi: 10.1111/j.1467-8659.2007.01090.x. |
[41] |
J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189-198. |
[42] |
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.
doi: 10.1007/s00161-009-0100-x. |
[43] |
L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 95-110. |
[44] |
C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference, San Jose, California, 1999, 763-782. |
[45] |
A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. Theory Exp., 2005 (2005), P10002.
doi: 10.1088/1742-5468/2005/10/P10002. |
[46] |
A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368 (2006), 232-238.
doi: 10.1016/j.physa.2005.11.052. |
[47] |
J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294. |
[48] |
J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2012 (2012), P02002.
doi: 10.1088/1742-5468/2012/02/P02002. |
[1] |
Geofferey Jiyun Kim, Jerim Kim, Bara Kim. A stochastic model of contagion with different individual types. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2175-2193. doi: 10.3934/jimo.2019049 |
[2] |
Elissar Nasreddine. Two-dimensional individual clustering model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307 |
[3] |
Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647 |
[4] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 567-578. doi: 10.3934/naco.2020056 |
[5] |
Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393 |
[6] |
Jeff Musgrave, James Watmough. Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic. Mathematical Biosciences & Engineering, 2009, 6 (2) : 363-376. doi: 10.3934/mbe.2009.6.363 |
[7] |
Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585 |
[8] |
Guillaume Cantin, Cristiana J. Silva, Arnaud Banos. Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic. Networks and Heterogeneous Media, 2022, 17 (3) : 333-357. doi: 10.3934/nhm.2022010 |
[9] |
Glenn F. Webb. Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1145-1166. doi: 10.3934/dcdsb.2017056 |
[10] |
William Wolesensky, J. David Logan. An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences & Engineering, 2007, 4 (1) : 67-84. doi: 10.3934/mbe.2007.4.67 |
[11] |
Christine Burggraf, Wilfried Grecksch, Thomas Glauben. Stochastic control of individual's health investments. Conference Publications, 2015, 2015 (special) : 159-168. doi: 10.3934/proc.2015.0159 |
[12] |
Zhuchun Li. Effectual leadership in flocks with hierarchy and individual preference. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3683-3702. doi: 10.3934/dcds.2014.34.3683 |
[13] |
Lea Ellwardt, Penélope Hernández, Guillem Martínez-Cánovas, Manuel Muñoz-Herrera. Conflict and segregation in networks: An experiment on the interplay between individual preferences and social influence. Journal of Dynamics and Games, 2016, 3 (2) : 191-216. doi: 10.3934/jdg.2016010 |
[14] |
Radek Erban, Jan Haskovec. From individual to collective behaviour of coupled velocity jump processes: A locust example. Kinetic and Related Models, 2012, 5 (4) : 817-842. doi: 10.3934/krm.2012.5.817 |
[15] |
Francesco Salvarani, Gabriel Turinici. Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection. Mathematical Biosciences & Engineering, 2018, 15 (3) : 629-652. doi: 10.3934/mbe.2018028 |
[16] |
Raneem Aizouk, Mark Broom. Modelling conflicting individual preference: Target sequences and graph realization. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022001 |
[17] |
Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127 |
[18] |
Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic and Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573 |
[19] |
Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009 |
[20] |
Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]