August  2015, 9(3): 353-373. doi: 10.3934/amc.2015.9.353

An improved certificateless strong key-insulated signature scheme in the standard model

1. 

College of Computer and Information Engineering, Hohai University, 8 Focheng Xilu, Nanjing, Jiangsu 211100, China, China, China

Received  August 2014 Revised  March 2015 Published  July 2015

Exposure of secret keys may be the most devastating attack on a public key cryptographic scheme since such that security is entirely lost. The key-insulated security provides a promising approach to deal with this threat since it can effectively mitigate the damage caused by the secret key exposure. To eliminate the cumbersome certificate management in traditional PKI-supported key-insulated signature while overcoming the key escrow problem in identity-based key-insulated signature, two certificateless key-insulated signature schemes without random oracles have been proposed so far. However, both of them suffer from some security drawbacks and do not achieve existential unforgeability. In this paper, we propose a new certificateless strong key-insulated signature scheme that is proven secure in the standard model. Compared with the previous certificateless strong proxy signature scheme, the proposed scheme offers stronger security and enjoys higher computational efficiency and shorter public parameters.
Citation: Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353
References:
[1]

in Proc. ASIACRYPT 2003, Springer-Verlag, 2003, 452-473. doi: 10.1007/978-3-540-40061-5_29.  Google Scholar

[2]

in Proc. ISC 2005, Springer-Verlag, 2005, 134-148. Google Scholar

[3]

in Proc. AAECC 2006, Springer-Verlag, 2006, 379-396. doi: 10.1007/s00200-005-0183-y.  Google Scholar

[4]

in Proc. ACNS 2007, Springer-Verlag, 2007, 443-458. doi: 10.1007/978-3-540-73489-5_5.  Google Scholar

[5]

in Proc. PKC 2008, Springer-Verlag, 2008, 344-359. doi: 10.1007/978-3-540-78440-1_20.  Google Scholar

[6]

in Proc. EUROCRYPT 2002, Springer-Verlag, 2002, 65-82. doi: 10.1007/3-540-46035-7_5.  Google Scholar

[7]

in Proc. PKC 2003, Springer-Verlag, 2003, 130-144. doi: 10.1007/3-540-36288-6_10.  Google Scholar

[8]

in Proc. ICICS 2004, Springer-Verlag, 2004, 465-479. Google Scholar

[9]

in Proc. PKC 2006, Springer-Verlag, 2006, 105-122. doi: 10.1007/11745853_8.  Google Scholar

[10]

in Proc. ICICS 2002, Springer-Verlag, 2002, 85-96. doi: 10.1007/3-540-36178-2_5.  Google Scholar

[11]

in Proc. ASIACRYPT 2005, Springer-Verlag, 2005, 495-514. doi: 10.1007/11593447_27.  Google Scholar

[12]

IET - Information Security, 7 (2013), 113-117. Google Scholar

[13]

in Proc. PKC 2006, Springer-Verlag, 2006, 474-490. doi: 10.1007/11745853_31.  Google Scholar

[14]

in Proc. ASIACCS 2007, ACM, 2007, 302-311. Google Scholar

[15]

Int. J. Network Sec., 6 (2008), 170-180. Google Scholar

[16]

in Proc. ISA 2009, Springer-Verlag, 2009, 200-209. Google Scholar

[17]

in Proc. CRYPTO 1984, Springer-Verlag, 1984, 47-53. doi: 10.1007/3-540-39568-7_5.  Google Scholar

[18]

Sci. China Inf. Sci., 53 (2010) 2005-2015. doi: 10.1007/s11432-010-4076-8.  Google Scholar

[19]

J. Syst. Software, 85 (2012) 1409-1417. Google Scholar

[20]

in Proc. CANS 2008, Springer-Verlag, 2008, 64-79. Google Scholar

[21]

J. Electronics (China), 26 (2009) 853-858. Google Scholar

[22]

J. Zhejiang Univ. Sci. A, 10 (2009), 1790-1800. Google Scholar

[23]

J. Shanghai Jiaotong Univ. (Sci), 16 (2011), 571-576. Google Scholar

[24]

in Proc. EUROCRYPT 2005, Springer-Verlag, 2005, 114-127. doi: 10.1007/11426639_7.  Google Scholar

[25]

in Proc. CIS 2006, Springer-Verlag, 2007, 470-480. doi: 10.1007/11941378_29.  Google Scholar

[26]

in Proc. CT-RSA 2008, Springer-Verlag, 2008, 203-220. doi: 10.1007/978-3-540-79263-5_13.  Google Scholar

[27]

Secur. Commun. Networks, 7 (2014) 445-454. Google Scholar

[28]

in Proc. Crypt. Coding 2003, Springer-Verlag, 2003, 16-18. doi: 10.1007/978-3-540-40974-8_14.  Google Scholar

[29]

in Proc. PKC 2004, Springer-Verlag, 2004, 277-290. doi: 10.1007/978-3-540-24632-9_20.  Google Scholar

[30]

in Proc. ACNS 2006, Springer-Verlag, 2006, 293-308. Google Scholar

[31]

in Proc. ISPEC 2006, Springer-Verlag, 2006, 226-234. Google Scholar

show all references

References:
[1]

in Proc. ASIACRYPT 2003, Springer-Verlag, 2003, 452-473. doi: 10.1007/978-3-540-40061-5_29.  Google Scholar

[2]

in Proc. ISC 2005, Springer-Verlag, 2005, 134-148. Google Scholar

[3]

in Proc. AAECC 2006, Springer-Verlag, 2006, 379-396. doi: 10.1007/s00200-005-0183-y.  Google Scholar

[4]

in Proc. ACNS 2007, Springer-Verlag, 2007, 443-458. doi: 10.1007/978-3-540-73489-5_5.  Google Scholar

[5]

in Proc. PKC 2008, Springer-Verlag, 2008, 344-359. doi: 10.1007/978-3-540-78440-1_20.  Google Scholar

[6]

in Proc. EUROCRYPT 2002, Springer-Verlag, 2002, 65-82. doi: 10.1007/3-540-46035-7_5.  Google Scholar

[7]

in Proc. PKC 2003, Springer-Verlag, 2003, 130-144. doi: 10.1007/3-540-36288-6_10.  Google Scholar

[8]

in Proc. ICICS 2004, Springer-Verlag, 2004, 465-479. Google Scholar

[9]

in Proc. PKC 2006, Springer-Verlag, 2006, 105-122. doi: 10.1007/11745853_8.  Google Scholar

[10]

in Proc. ICICS 2002, Springer-Verlag, 2002, 85-96. doi: 10.1007/3-540-36178-2_5.  Google Scholar

[11]

in Proc. ASIACRYPT 2005, Springer-Verlag, 2005, 495-514. doi: 10.1007/11593447_27.  Google Scholar

[12]

IET - Information Security, 7 (2013), 113-117. Google Scholar

[13]

in Proc. PKC 2006, Springer-Verlag, 2006, 474-490. doi: 10.1007/11745853_31.  Google Scholar

[14]

in Proc. ASIACCS 2007, ACM, 2007, 302-311. Google Scholar

[15]

Int. J. Network Sec., 6 (2008), 170-180. Google Scholar

[16]

in Proc. ISA 2009, Springer-Verlag, 2009, 200-209. Google Scholar

[17]

in Proc. CRYPTO 1984, Springer-Verlag, 1984, 47-53. doi: 10.1007/3-540-39568-7_5.  Google Scholar

[18]

Sci. China Inf. Sci., 53 (2010) 2005-2015. doi: 10.1007/s11432-010-4076-8.  Google Scholar

[19]

J. Syst. Software, 85 (2012) 1409-1417. Google Scholar

[20]

in Proc. CANS 2008, Springer-Verlag, 2008, 64-79. Google Scholar

[21]

J. Electronics (China), 26 (2009) 853-858. Google Scholar

[22]

J. Zhejiang Univ. Sci. A, 10 (2009), 1790-1800. Google Scholar

[23]

J. Shanghai Jiaotong Univ. (Sci), 16 (2011), 571-576. Google Scholar

[24]

in Proc. EUROCRYPT 2005, Springer-Verlag, 2005, 114-127. doi: 10.1007/11426639_7.  Google Scholar

[25]

in Proc. CIS 2006, Springer-Verlag, 2007, 470-480. doi: 10.1007/11941378_29.  Google Scholar

[26]

in Proc. CT-RSA 2008, Springer-Verlag, 2008, 203-220. doi: 10.1007/978-3-540-79263-5_13.  Google Scholar

[27]

Secur. Commun. Networks, 7 (2014) 445-454. Google Scholar

[28]

in Proc. Crypt. Coding 2003, Springer-Verlag, 2003, 16-18. doi: 10.1007/978-3-540-40974-8_14.  Google Scholar

[29]

in Proc. PKC 2004, Springer-Verlag, 2004, 277-290. doi: 10.1007/978-3-540-24632-9_20.  Google Scholar

[30]

in Proc. ACNS 2006, Springer-Verlag, 2006, 293-308. Google Scholar

[31]

in Proc. ISPEC 2006, Springer-Verlag, 2006, 226-234. Google Scholar

[1]

Mohamed Baouch, Juan Antonio López-Ramos, Blas Torrecillas, Reto Schnyder. An active attack on a distributed Group Key Exchange system. Advances in Mathematics of Communications, 2017, 11 (4) : 715-717. doi: 10.3934/amc.2017052

[2]

Yvo Desmedt, Niels Duif, Henk van Tilborg, Huaxiong Wang. Bounds and constructions for key distribution schemes. Advances in Mathematics of Communications, 2009, 3 (3) : 273-293. doi: 10.3934/amc.2009.3.273

[3]

Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247

[4]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

[5]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[6]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[7]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[8]

Rainer Steinwandt, Adriana Suárez Corona. Attribute-based group key establishment. Advances in Mathematics of Communications, 2010, 4 (3) : 381-398. doi: 10.3934/amc.2010.4.381

[9]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[10]

Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells. Ironwood meta key agreement and authentication protocol. Advances in Mathematics of Communications, 2021, 15 (3) : 397-413. doi: 10.3934/amc.2020073

[11]

Mohammad Sadeq Dousti, Rasool Jalili. FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Advances in Mathematics of Communications, 2015, 9 (4) : 471-514. doi: 10.3934/amc.2015.9.471

[12]

Rainer Steinwandt, Adriana Suárez Corona. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Advances in Mathematics of Communications, 2011, 5 (1) : 87-92. doi: 10.3934/amc.2011.5.87

[13]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[14]

Jake Bouvrie, Boumediene Hamzi. Kernel methods for the approximation of some key quantities of nonlinear systems. Journal of Computational Dynamics, 2017, 4 (1&2) : 1-19. doi: 10.3934/jcd.2017001

[15]

Sikhar Patranabis, Debdeep Mukhopadhyay. Identity-based key aggregate cryptosystem from multilinear maps. Advances in Mathematics of Communications, 2019, 13 (4) : 759-778. doi: 10.3934/amc.2019044

[16]

Riccardo Aragona, Marco Calderini, Roberto Civino. Some group-theoretical results on Feistel Networks in a long-key scenario. Advances in Mathematics of Communications, 2020, 14 (4) : 727-743. doi: 10.3934/amc.2020093

[17]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[18]

Xinwei Gao. Comparison analysis of Ding's RLWE-based key exchange protocol and NewHope variants. Advances in Mathematics of Communications, 2019, 13 (2) : 221-233. doi: 10.3934/amc.2019015

[19]

Andrei Korobeinikov. Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1095-1103. doi: 10.3934/dcdsb.2010.14.1095

[20]

Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, Etienne Marcatel. A practicable timing attack against HQC and its countermeasure. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020126

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]