2015, 9(3): 709-723. doi: 10.3934/ipi.2015.9.709

Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials

1. 

Department of Mathematics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

2. 

Department of Mathematics, Colorado State University,101 Weber Building, Fort Colins, CO 80523-1784, United States

3. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  October 2014 Revised  February 2015 Published  July 2015

We consider inverse boundary value problems for the Schrödinger equations in two dimensions. Within less regular classes of potentials, we establish a conditional stability estimate of logarithmic order. Moreover we prove the uniqueness within $L^p$-class of potentials with $p>2$.
Citation: Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003).

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. doi: 10.1080/00036818808839730.

[3]

K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint,, , ().

[4]

E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result,, Licentiate thesis, (2010).

[5]

E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions,, Ph.D. thesis, (2013).

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inverse Ill-Posed Probl., 16 (2008), 19. doi: 10.1515/jiip.2008.002.

[7]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998).

[8]

O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint,, , ().

[9]

O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems, by Dirichlet-to-Neumann map on subboundaries, (). doi: 10.1007/s00032-013-0205-3.

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972).

[11]

L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem,, Ph.D. thesis, (1997).

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435. doi: 10.1088/0266-5611/17/5/313.

[13]

C. Miranda, Partial Differential Equations of Elliptic Type,, $2^{nd}$ revised edition, (1970).

[14]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653.

[15]

R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón, inverse problem in two dimensions, (). doi: 10.1515/JIIP.2011.003.

[16]

R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the, multi-channel Gel'fand-Calderón inverse problem in two dimensions., (). doi: 10.1016/j.bulsci.2011.04.007.

[17]

M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions,, J. Inst. Math. Jussieu, 12 (2013), 553. doi: 10.1017/S147474801200076X.

[18]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value, problem., (). doi: 10.2307/1971291.

[19]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123011.

[20]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962).

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003).

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. doi: 10.1080/00036818808839730.

[3]

K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint,, , ().

[4]

E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result,, Licentiate thesis, (2010).

[5]

E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions,, Ph.D. thesis, (2013).

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inverse Ill-Posed Probl., 16 (2008), 19. doi: 10.1515/jiip.2008.002.

[7]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998).

[8]

O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint,, , ().

[9]

O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems, by Dirichlet-to-Neumann map on subboundaries, (). doi: 10.1007/s00032-013-0205-3.

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972).

[11]

L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem,, Ph.D. thesis, (1997).

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435. doi: 10.1088/0266-5611/17/5/313.

[13]

C. Miranda, Partial Differential Equations of Elliptic Type,, $2^{nd}$ revised edition, (1970).

[14]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653.

[15]

R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón, inverse problem in two dimensions, (). doi: 10.1515/JIIP.2011.003.

[16]

R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the, multi-channel Gel'fand-Calderón inverse problem in two dimensions., (). doi: 10.1016/j.bulsci.2011.04.007.

[17]

M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions,, J. Inst. Math. Jussieu, 12 (2013), 553. doi: 10.1017/S147474801200076X.

[18]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value, problem., (). doi: 10.2307/1971291.

[19]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123011.

[20]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962).

[1]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[2]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[3]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[4]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[5]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[6]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[7]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[8]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[9]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[10]

Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155

[11]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[12]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[13]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[14]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[15]

Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016

[16]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[17]

V. V. Motreanu. Uniqueness results for a Dirichlet problem with variable exponent. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1399-1410. doi: 10.3934/cpaa.2010.9.1399

[18]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[19]

Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics & Games, 2015, 2 (3&4) : 257-287. doi: 10.3934/jdg.2015004

[20]

Pedro J. Torres, Zhibo Cheng, Jingli Ren. Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2155-2168. doi: 10.3934/dcds.2013.33.2155

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (7)

[Back to Top]