2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

Ergodicity and topological entropy of geodesic flows on surfaces

1. 

Faculty of Mathematics, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany

Received  February 2015 Revised  May 2015 Published  August 2015

We consider reversible Finsler metrics on the 2-sphere and the 2-torus, whose geodesic flow has vanishing topological entropy. Following a construction of A. Katok, we discuss examples of Finsler metrics on both surfaces with large ergodic components for the geodesic flow in the unit tangent bundle. On the other hand, using results of J. Franks and M. Handel, we prove that ergodicity and dense orbits cannot occur in the full unit tangent bundle of the 2-sphere, if the Finsler metric has conjugate points along every closed geodesic. In the case of the 2-torus, we show that ergodicity is restricted to strict subsets of tubes between flow-invariant tori in the unit tangent bundle. The analogous result applies to monotone twist maps.
Citation: Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147
References:
[1]

S. Alpern and V. S. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms,, Cambridge Tracts in Mathematics, (2000).

[2]

S. Angenent, Parabolic equations for curves on surfaces: Part II. Intersections, blow-up and generalized solutions,, Ann. of Math. (2), 133 (1991), 171. doi: 10.2307/2944327.

[3]

S. Angenent, A remark on the topological entropy and invariant circles of an area preserving twistmap,, in Twist Mappings and Their Applications, (1992), 1.

[4]

S. Angenent, Self-intersecting geodesics and entropy of the geodesic flow,, Acta Math. Sin. (Engl. Ser.), 24 (2008), 1949. doi: 10.1007/s10114-008-6439-2.

[5]

V. Bangert, On the existence of closed geodesics on two-spheres,, Internat. J. Math., 4 (1993), 1. doi: 10.1142/S0129167X93000029.

[6]

D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,, Graduate Texts in Mathematics, (2000). doi: 10.1007/978-1-4612-1268-3.

[7]

P. Bernard and C. Labrousse, An entropic characterization of the flat metrics on the two torus,, to appear in Geometriae Dedicata, (2015). doi: 10.1007/s10711-015-0098-0.

[8]

G. D. Birkhoff, Dynamical Systems,, American Mathematical Society Colloquium Publications, (1927).

[9]

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification,, Chapman & Hall/CRC, (2004). doi: 10.1201/9780203643426.

[10]

M. Bonino, Around Brouwer's theory of fixed point free planar homeomorphisms,, Notes de cours de l'École d'été, (2006).

[11]

M. Brown, A new proof of Brouwer's lemma on translation arcs,, Houston J. Math., 10 (1984), 35.

[12]

E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems,, Math. USSR Izv., 5 (1971), 337. doi: 10.1070/IM1971v005n02ABEH001050.

[13]

V. J. Donnay, Geodesic flow on the two-sphere. II. Ergodicity,, in Dynamical Systems, (1342), 112. doi: 10.1007/BFb0082827.

[14]

H. Duan and Y. Long, A remark on the existence of closed geodesics on symmetric Finsler 2-spheres,, 2012. Available from: , (): 201202.

[15]

J. Franks, Geodesics on $\mathbbS^2$ and periodic points of annulus homeomorphisms,, Invent. Math., 108 (1992), 403. doi: 10.1007/BF02100612.

[16]

J. Franks and M. Handel, Entropy zero area preserving diffeomorphisms of $\mathbbS^2$,, Geom. Topol., 16 (2012), 2187. doi: 10.2140/gt.2012.16.2187.

[17]

E. Glasmachers and G. Knieper, Characterization of geodesic flows on $\mathbbT^2$ with and without positive topological entropy,, Geom. Funct. Anal., 20 (2010), 1259. doi: 10.1007/s00039-010-0087-2.

[18]

E. Glasmachers and G. Knieper, Minimal geodesic foliation on $\mathbbT^2$ in case of vanishing topological entropy,, J. Topol. Anal., 3 (2011), 511. doi: 10.1142/S1793525311000623.

[19]

M. A. Grayson, Shortening embedded curves,, Ann. of Math. (2), 129 (1989), 71. doi: 10.2307/1971486.

[20]

A. Harris and G. P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders,, Ann. Global Anal. Geom., 34 (2008), 115. doi: 10.1007/s10455-008-9111-2.

[21]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719. doi: 10.2307/1968215.

[22]

M. W. Hirsch, Differential Topology,, Graduate Texts in Mathematics, (1976).

[23]

A. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems,, Math. USSR Izv., 7 (1973), 535.

[24]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.

[25]

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,, Encyclopedia of Mathematics and its Applications, (1995). doi: 10.1017/CBO9780511809187.

[26]

G. P. Paternain, Entropy and completely integrable Hamiltonian systems,, Proc. Amer. Math. Soc., 113 (1991), 871. doi: 10.1090/S0002-9939-1991-1059632-7.

[27]

J. P. Schröder, Invariant tori and topological entropy in Tonelli Lagrangian systems on the 2-torus,, to appear in Ergodic Theory and Dynamical Systems, (2015). doi: 10.1017/etds.2014.137.

[28]

J. P. Schröder, Global minimizers for Tonelli Lagrangians on the 2-torus,, J. Topol. Anal., 7 (2015), 261. doi: 10.1142/S1793525315500090.

[29]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285. doi: 10.1007/BF02766215.

show all references

References:
[1]

S. Alpern and V. S. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms,, Cambridge Tracts in Mathematics, (2000).

[2]

S. Angenent, Parabolic equations for curves on surfaces: Part II. Intersections, blow-up and generalized solutions,, Ann. of Math. (2), 133 (1991), 171. doi: 10.2307/2944327.

[3]

S. Angenent, A remark on the topological entropy and invariant circles of an area preserving twistmap,, in Twist Mappings and Their Applications, (1992), 1.

[4]

S. Angenent, Self-intersecting geodesics and entropy of the geodesic flow,, Acta Math. Sin. (Engl. Ser.), 24 (2008), 1949. doi: 10.1007/s10114-008-6439-2.

[5]

V. Bangert, On the existence of closed geodesics on two-spheres,, Internat. J. Math., 4 (1993), 1. doi: 10.1142/S0129167X93000029.

[6]

D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,, Graduate Texts in Mathematics, (2000). doi: 10.1007/978-1-4612-1268-3.

[7]

P. Bernard and C. Labrousse, An entropic characterization of the flat metrics on the two torus,, to appear in Geometriae Dedicata, (2015). doi: 10.1007/s10711-015-0098-0.

[8]

G. D. Birkhoff, Dynamical Systems,, American Mathematical Society Colloquium Publications, (1927).

[9]

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification,, Chapman & Hall/CRC, (2004). doi: 10.1201/9780203643426.

[10]

M. Bonino, Around Brouwer's theory of fixed point free planar homeomorphisms,, Notes de cours de l'École d'été, (2006).

[11]

M. Brown, A new proof of Brouwer's lemma on translation arcs,, Houston J. Math., 10 (1984), 35.

[12]

E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems,, Math. USSR Izv., 5 (1971), 337. doi: 10.1070/IM1971v005n02ABEH001050.

[13]

V. J. Donnay, Geodesic flow on the two-sphere. II. Ergodicity,, in Dynamical Systems, (1342), 112. doi: 10.1007/BFb0082827.

[14]

H. Duan and Y. Long, A remark on the existence of closed geodesics on symmetric Finsler 2-spheres,, 2012. Available from: , (): 201202.

[15]

J. Franks, Geodesics on $\mathbbS^2$ and periodic points of annulus homeomorphisms,, Invent. Math., 108 (1992), 403. doi: 10.1007/BF02100612.

[16]

J. Franks and M. Handel, Entropy zero area preserving diffeomorphisms of $\mathbbS^2$,, Geom. Topol., 16 (2012), 2187. doi: 10.2140/gt.2012.16.2187.

[17]

E. Glasmachers and G. Knieper, Characterization of geodesic flows on $\mathbbT^2$ with and without positive topological entropy,, Geom. Funct. Anal., 20 (2010), 1259. doi: 10.1007/s00039-010-0087-2.

[18]

E. Glasmachers and G. Knieper, Minimal geodesic foliation on $\mathbbT^2$ in case of vanishing topological entropy,, J. Topol. Anal., 3 (2011), 511. doi: 10.1142/S1793525311000623.

[19]

M. A. Grayson, Shortening embedded curves,, Ann. of Math. (2), 129 (1989), 71. doi: 10.2307/1971486.

[20]

A. Harris and G. P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders,, Ann. Global Anal. Geom., 34 (2008), 115. doi: 10.1007/s10455-008-9111-2.

[21]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719. doi: 10.2307/1968215.

[22]

M. W. Hirsch, Differential Topology,, Graduate Texts in Mathematics, (1976).

[23]

A. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems,, Math. USSR Izv., 7 (1973), 535.

[24]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.

[25]

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,, Encyclopedia of Mathematics and its Applications, (1995). doi: 10.1017/CBO9780511809187.

[26]

G. P. Paternain, Entropy and completely integrable Hamiltonian systems,, Proc. Amer. Math. Soc., 113 (1991), 871. doi: 10.1090/S0002-9939-1991-1059632-7.

[27]

J. P. Schröder, Invariant tori and topological entropy in Tonelli Lagrangian systems on the 2-torus,, to appear in Ergodic Theory and Dynamical Systems, (2015). doi: 10.1017/etds.2014.137.

[28]

J. P. Schröder, Global minimizers for Tonelli Lagrangians on the 2-torus,, J. Topol. Anal., 7 (2015), 261. doi: 10.1142/S1793525315500090.

[29]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285. doi: 10.1007/BF02766215.

[1]

Ping-Liang Huang, Youde Wang. Periodic solutions of inhomogeneous Schrödinger flows into 2-sphere. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1775-1795. doi: 10.3934/dcdss.2016074

[2]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[3]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[4]

Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171

[5]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[6]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

[7]

Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983

[8]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[9]

Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

[10]

Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110.

[11]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[12]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[13]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[14]

Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247

[15]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[16]

Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563

[17]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[18]

Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339

[19]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[20]

James Benn. Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group. Journal of Geometric Mechanics, 2016, 8 (1) : 1-12. doi: 10.3934/jgm.2016.8.1

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]