October  2015, 20(8): 2497-2526. doi: 10.3934/dcdsb.2015.20.2497

Separable Lyapunov functions for monotone systems: Constructions and limitations

1. 

Institut für Mathematik, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 40, 97074 Würzburg, Germany

2. 

Department of Systems Design and Informatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan

3. 

Automatic Control LTH, Lund University, Box 118, SE-221 00 Lund, Sweden

4. 

School of Mathematical & Physical Sciences, Faculty of Science & IT, The University of Newcastle (UON), University Drive, Callaghan NSW 2308, Australia

Received  July 2014 Revised  January 2015 Published  August 2015

For monotone systems evolving on the positive orthant of $\mathbb{R}^n_+$ two types of Lyapunov functions are considered: Sum- and max-separable Lyapunov functions. One can be written as a sum, the other as a maximum of functions of scalar arguments. Several constructive existence results for both types are given. Notably, one construction provides a max-separable Lyapunov function that is defined at least on an arbitrarily large compact set, based on little more than the knowledge about one trajectory. Another construction for a class of planar systems yields a global sum-separable Lyapunov function, provided the right hand side satisfies a small-gain type condition. A number of examples demonstrate these methods and shed light on the relation between the shape of sublevel sets and the right hand side of the system equation. Negative examples show that there are indeed globally asymptotically stable systems that do not admit either type of Lyapunov function.
Citation: Gunther Dirr, Hiroshi Ito, Anders Rantzer, Björn S. Rüffer. Separable Lyapunov functions for monotone systems: Constructions and limitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2497-2526. doi: 10.3934/dcdsb.2015.20.2497
References:
[1]

D. Angeli and A. Astolfi, A tight small-gain theorem for not necessarily ISS systems,, Systems Control Lett., 56 (2007), 87.  doi: 10.1016/j.sysconle.2006.08.003.  Google Scholar

[2]

D. Angeli, E. D. Sontag and Y. Wang, A characterization of integral input-to-state stability,, IEEE Trans. Autom. Control, 45 (2000), 1082.  doi: 10.1109/9.863594.  Google Scholar

[3]

A. Bacciotti, F. Ceragioli and L. Mazzi, Differential inclusions and monotonicity conditions for nonsmooth Lyapunov functions,, Set-Valued Analysis, 8 (2000), 299.  doi: 10.1023/A:1008763931789.  Google Scholar

[4]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, Academic Press, (1979).   Google Scholar

[5]

N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems,, Die Grundlehren der mathematischen Wissenschaften, (1970).   Google Scholar

[6]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).   Google Scholar

[7]

G. Como, E. Lovisari and K. Savla, Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing,, IEEE Trans. Contr. Network Systems, 2 (2014), 57.  doi: 10.1109/TCNS.2014.2367361.  Google Scholar

[8]

S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth, Small gain theorems for large scale systems and construction of ISS Lyapunov functions,, SIAM J. Control Optim., 48 (2010), 4089.  doi: 10.1137/090746483.  Google Scholar

[9]

P. De Leenheer, D. Angeli and E. D. Sontag, Monotone chemical reaction networks,, Journal of Mathematical Chemistry, 41 (2007), 295.  doi: 10.1007/s10910-006-9075-z.  Google Scholar

[10]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness,, Springer, (2005).  doi: 10.1007/b137541.  Google Scholar

[11]

M. W. Hirsch and H. Smith, Monotone dynamical systems,, in Handbook of Differential Equations: Ordinary Differential Equations, (2005), 239.   Google Scholar

[12]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets,, SIAM J. Math. Anal., 13 (1982), 167.  doi: 10.1137/0513013.  Google Scholar

[13]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere,, SIAM J. Math. Anal., 16 (1985), 423.  doi: 10.1137/0516030.  Google Scholar

[14]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species,, Nonlinearity, 1 (1988), 51.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[15]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in $3$-dimensional systems,, J. Diff. Eqns., 80 (1989), 94.  doi: 10.1016/0022-0396(89)90097-1.  Google Scholar

[16]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. IV. Structural stability in three-dimensional systems,, SIAM J. Math. Anal., 21 (1990), 1225.  doi: 10.1137/0521067.  Google Scholar

[17]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. VI. A local $C^r$ closing lemma for 3-dimensional systems,, Ergodic Theory Dynam. Systems, 11 (1991), 443.  doi: 10.1017/S014338570000626X.  Google Scholar

[18]

M. W. Hirsch and H. L. Smith, Competitive and cooperative systems: Mini-review,, in Positive systems (Rome, (2003), 183.  doi: 10.1007/978-3-540-44928-7_25.  Google Scholar

[19]

H. Ito, A Lyapunov approach to cascade interconnection of integral input-to-state stable systems,, IEEE Trans. Autom. Control, 55 (2010), 702.  doi: 10.1109/TAC.2009.2037457.  Google Scholar

[20]

H. Ito and Z.-P. Jiang, Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov perspective,, IEEE Trans. Autom. Control, 54 (2009), 2389.  doi: 10.1109/TAC.2009.2028980.  Google Scholar

[21]

H. Ito, State-dependent scaling problems and stability of interconnected iISS and ISS systems,, IEEE Trans. Autom. Control, 51 (2006), 1626.  doi: 10.1109/TAC.2006.882930.  Google Scholar

[22]

H. Ito, S. Dashkovskiy and F. Wirth, Capability and limitation of max- and sum-type construction of Lyapunov functions for networks of iISS systems,, Automatica J. IFAC, 48 (2012), 1197.  doi: 10.1016/j.automatica.2012.03.018.  Google Scholar

[23]

H. Ito, Z.-P. Jiang, S. Dashkovskiy and B. S. Rüffer, Robust stability of networks of iISS systems: Construction of sum-type Lyapunov functions,, IEEE Trans. Autom. Control, 58 (2013), 1192.  doi: 10.1109/TAC.2012.2231552.  Google Scholar

[24]

H. Ito, B. S. Rüffer and A. Rantzer, Max- and sum-separable Lyapunov functions for monotone systems and their level sets,, in Proc. 53rd IEEE Conf. Decis. Control, (2014), 2371.  doi: 10.1109/CDC.2014.7039750.  Google Scholar

[25]

Z.-P. Jiang, I. M. Y. Mareels and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems,, Automatica J. IFAC, 32 (1996), 1211.  doi: 10.1016/0005-1098(96)00051-9.  Google Scholar

[26]

H. K. Khalil, Nonlinear systems,, 3rd edition, (2002).   Google Scholar

[27]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications, Vol. I: Ordinary Differential Equations,, Academic Press, (1969).   Google Scholar

[28]

M. Margaliot and T. Tuller, Stability analysis of the ribosome flow model,, IEEE/ACM Trans. Comp. Biology & Bioinformatics, 9 (2012), 1545.  doi: 10.1109/TCBB.2012.88.  Google Scholar

[29]

A. Rantzer, Distributed control of positive systems,, in Proc. 50th IEEE Conf. Decis. Control and Europ. Contr. Conf., (2011), 6608.  doi: 10.1109/CDC.2011.6161293.  Google Scholar

[30]

A. Rantzer, Optimizing positively dominated systems,, in Proc. 51st IEEE Conf. Decis. Control, (2012), 272.  doi: 10.1109/CDC.2012.6426312.  Google Scholar

[31]

A. Rantzer, B. S. Rüffer and G. Dirr, Separable Lyapunov functions for monotone systems,, in Proc. 52nd IEEE Conf. Decis. Control, (2013), 4590.  doi: 10.1109/CDC.2013.6760604.  Google Scholar

[32]

B. S. Rüffer, Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean $n$-space,, Positivity, 14 (2010), 257.  doi: 10.1007/s11117-009-0016-5.  Google Scholar

[33]

B. S. Rüffer, Small-gain conditions and the comparison principle,, IEEE Trans. Autom. Control, 55 (2010), 1732.  doi: 10.1109/TAC.2010.2048053.  Google Scholar

[34]

B. S. Rüffer, P. M. Dower and H. Ito, Computational comparison principles for large-scale system stability analysis,, in Proc. of the 10th SICE Annual Conference on Control Systems, (2010).   Google Scholar

[35]

B. S. Rüffer, H. Ito and P. M. Dower, Computing asymptotic gains of large-scale interconnections,, in Proc. 49th IEEE Conf. Decis. Control, (2010), 7413.   Google Scholar

[36]

B. S. Rüffer, C. M. Kellett and S. R. Weller, Connection between cooperative positive systems and integral input-to-state stability of large-scale systems,, Automatica J. IFAC, 46 (2010), 1019.  doi: 10.1016/j.automatica.2010.03.012.  Google Scholar

[37]

H. L. Smith, Monotone Dynamical Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[38]

E. D. Sontag, Input to state stability,, in The Control Systems Handbook: Control System Advanced Methods (ed. W. S. Levine), (2010), 1.   Google Scholar

[39]

E. D. Sontag, Smooth stabilization implies coprime factorization,, IEEE Trans. Autom. Control, 34 (1989), 435.  doi: 10.1109/9.28018.  Google Scholar

[40]

E. D. Sontag, Comments on integral variants of ISS,, Systems Control Lett., 34 (1998), 93.  doi: 10.1016/S0167-6911(98)00003-6.  Google Scholar

[41]

E. D. Sontag, Monotone and near-monotone biochemical networks,, Systems and Synthetic Biology, 1 (2007), 59.  doi: 10.1007/s11693-007-9005-9.  Google Scholar

[42]

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property,, Systems Control Lett., 24 (1995), 351.  doi: 10.1016/0167-6911(94)00050-6.  Google Scholar

[43]

J. A. Yorke, Extending Liapunov's second method to non-Lipschitz Liapunov functions,, Bull. Amer. Math. Soc., 74 (1968), 322.  doi: 10.1090/S0002-9904-1968-11940-8.  Google Scholar

[44]

T. Yoshizawa, Stability Theory by Liapunov's Second Method,, Publications of the Mathematical Society of Japan, (1966).   Google Scholar

show all references

References:
[1]

D. Angeli and A. Astolfi, A tight small-gain theorem for not necessarily ISS systems,, Systems Control Lett., 56 (2007), 87.  doi: 10.1016/j.sysconle.2006.08.003.  Google Scholar

[2]

D. Angeli, E. D. Sontag and Y. Wang, A characterization of integral input-to-state stability,, IEEE Trans. Autom. Control, 45 (2000), 1082.  doi: 10.1109/9.863594.  Google Scholar

[3]

A. Bacciotti, F. Ceragioli and L. Mazzi, Differential inclusions and monotonicity conditions for nonsmooth Lyapunov functions,, Set-Valued Analysis, 8 (2000), 299.  doi: 10.1023/A:1008763931789.  Google Scholar

[4]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, Academic Press, (1979).   Google Scholar

[5]

N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems,, Die Grundlehren der mathematischen Wissenschaften, (1970).   Google Scholar

[6]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).   Google Scholar

[7]

G. Como, E. Lovisari and K. Savla, Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing,, IEEE Trans. Contr. Network Systems, 2 (2014), 57.  doi: 10.1109/TCNS.2014.2367361.  Google Scholar

[8]

S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth, Small gain theorems for large scale systems and construction of ISS Lyapunov functions,, SIAM J. Control Optim., 48 (2010), 4089.  doi: 10.1137/090746483.  Google Scholar

[9]

P. De Leenheer, D. Angeli and E. D. Sontag, Monotone chemical reaction networks,, Journal of Mathematical Chemistry, 41 (2007), 295.  doi: 10.1007/s10910-006-9075-z.  Google Scholar

[10]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness,, Springer, (2005).  doi: 10.1007/b137541.  Google Scholar

[11]

M. W. Hirsch and H. Smith, Monotone dynamical systems,, in Handbook of Differential Equations: Ordinary Differential Equations, (2005), 239.   Google Scholar

[12]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets,, SIAM J. Math. Anal., 13 (1982), 167.  doi: 10.1137/0513013.  Google Scholar

[13]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere,, SIAM J. Math. Anal., 16 (1985), 423.  doi: 10.1137/0516030.  Google Scholar

[14]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species,, Nonlinearity, 1 (1988), 51.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[15]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in $3$-dimensional systems,, J. Diff. Eqns., 80 (1989), 94.  doi: 10.1016/0022-0396(89)90097-1.  Google Scholar

[16]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. IV. Structural stability in three-dimensional systems,, SIAM J. Math. Anal., 21 (1990), 1225.  doi: 10.1137/0521067.  Google Scholar

[17]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. VI. A local $C^r$ closing lemma for 3-dimensional systems,, Ergodic Theory Dynam. Systems, 11 (1991), 443.  doi: 10.1017/S014338570000626X.  Google Scholar

[18]

M. W. Hirsch and H. L. Smith, Competitive and cooperative systems: Mini-review,, in Positive systems (Rome, (2003), 183.  doi: 10.1007/978-3-540-44928-7_25.  Google Scholar

[19]

H. Ito, A Lyapunov approach to cascade interconnection of integral input-to-state stable systems,, IEEE Trans. Autom. Control, 55 (2010), 702.  doi: 10.1109/TAC.2009.2037457.  Google Scholar

[20]

H. Ito and Z.-P. Jiang, Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov perspective,, IEEE Trans. Autom. Control, 54 (2009), 2389.  doi: 10.1109/TAC.2009.2028980.  Google Scholar

[21]

H. Ito, State-dependent scaling problems and stability of interconnected iISS and ISS systems,, IEEE Trans. Autom. Control, 51 (2006), 1626.  doi: 10.1109/TAC.2006.882930.  Google Scholar

[22]

H. Ito, S. Dashkovskiy and F. Wirth, Capability and limitation of max- and sum-type construction of Lyapunov functions for networks of iISS systems,, Automatica J. IFAC, 48 (2012), 1197.  doi: 10.1016/j.automatica.2012.03.018.  Google Scholar

[23]

H. Ito, Z.-P. Jiang, S. Dashkovskiy and B. S. Rüffer, Robust stability of networks of iISS systems: Construction of sum-type Lyapunov functions,, IEEE Trans. Autom. Control, 58 (2013), 1192.  doi: 10.1109/TAC.2012.2231552.  Google Scholar

[24]

H. Ito, B. S. Rüffer and A. Rantzer, Max- and sum-separable Lyapunov functions for monotone systems and their level sets,, in Proc. 53rd IEEE Conf. Decis. Control, (2014), 2371.  doi: 10.1109/CDC.2014.7039750.  Google Scholar

[25]

Z.-P. Jiang, I. M. Y. Mareels and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems,, Automatica J. IFAC, 32 (1996), 1211.  doi: 10.1016/0005-1098(96)00051-9.  Google Scholar

[26]

H. K. Khalil, Nonlinear systems,, 3rd edition, (2002).   Google Scholar

[27]

V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications, Vol. I: Ordinary Differential Equations,, Academic Press, (1969).   Google Scholar

[28]

M. Margaliot and T. Tuller, Stability analysis of the ribosome flow model,, IEEE/ACM Trans. Comp. Biology & Bioinformatics, 9 (2012), 1545.  doi: 10.1109/TCBB.2012.88.  Google Scholar

[29]

A. Rantzer, Distributed control of positive systems,, in Proc. 50th IEEE Conf. Decis. Control and Europ. Contr. Conf., (2011), 6608.  doi: 10.1109/CDC.2011.6161293.  Google Scholar

[30]

A. Rantzer, Optimizing positively dominated systems,, in Proc. 51st IEEE Conf. Decis. Control, (2012), 272.  doi: 10.1109/CDC.2012.6426312.  Google Scholar

[31]

A. Rantzer, B. S. Rüffer and G. Dirr, Separable Lyapunov functions for monotone systems,, in Proc. 52nd IEEE Conf. Decis. Control, (2013), 4590.  doi: 10.1109/CDC.2013.6760604.  Google Scholar

[32]

B. S. Rüffer, Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean $n$-space,, Positivity, 14 (2010), 257.  doi: 10.1007/s11117-009-0016-5.  Google Scholar

[33]

B. S. Rüffer, Small-gain conditions and the comparison principle,, IEEE Trans. Autom. Control, 55 (2010), 1732.  doi: 10.1109/TAC.2010.2048053.  Google Scholar

[34]

B. S. Rüffer, P. M. Dower and H. Ito, Computational comparison principles for large-scale system stability analysis,, in Proc. of the 10th SICE Annual Conference on Control Systems, (2010).   Google Scholar

[35]

B. S. Rüffer, H. Ito and P. M. Dower, Computing asymptotic gains of large-scale interconnections,, in Proc. 49th IEEE Conf. Decis. Control, (2010), 7413.   Google Scholar

[36]

B. S. Rüffer, C. M. Kellett and S. R. Weller, Connection between cooperative positive systems and integral input-to-state stability of large-scale systems,, Automatica J. IFAC, 46 (2010), 1019.  doi: 10.1016/j.automatica.2010.03.012.  Google Scholar

[37]

H. L. Smith, Monotone Dynamical Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[38]

E. D. Sontag, Input to state stability,, in The Control Systems Handbook: Control System Advanced Methods (ed. W. S. Levine), (2010), 1.   Google Scholar

[39]

E. D. Sontag, Smooth stabilization implies coprime factorization,, IEEE Trans. Autom. Control, 34 (1989), 435.  doi: 10.1109/9.28018.  Google Scholar

[40]

E. D. Sontag, Comments on integral variants of ISS,, Systems Control Lett., 34 (1998), 93.  doi: 10.1016/S0167-6911(98)00003-6.  Google Scholar

[41]

E. D. Sontag, Monotone and near-monotone biochemical networks,, Systems and Synthetic Biology, 1 (2007), 59.  doi: 10.1007/s11693-007-9005-9.  Google Scholar

[42]

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property,, Systems Control Lett., 24 (1995), 351.  doi: 10.1016/0167-6911(94)00050-6.  Google Scholar

[43]

J. A. Yorke, Extending Liapunov's second method to non-Lipschitz Liapunov functions,, Bull. Amer. Math. Soc., 74 (1968), 322.  doi: 10.1090/S0002-9904-1968-11940-8.  Google Scholar

[44]

T. Yoshizawa, Stability Theory by Liapunov's Second Method,, Publications of the Mathematical Society of Japan, (1966).   Google Scholar

[1]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[2]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[3]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[4]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[5]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[6]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[9]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[10]

Roderick S. C. Wong, H. Y. Zhang. On the connection formulas of the third Painlevé transcendent. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 541-560. doi: 10.3934/dcds.2009.23.541

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[13]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[14]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[15]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[16]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[17]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[18]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (20)

[Back to Top]