# American Institute of Mathematical Sciences

2015, 12(6): 1237-1256. doi: 10.3934/mbe.2015.12.1237

## Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections

 1 Department of Mathematics and Computer Science, University of Richmond, Richmond, VA 2 Weill Cornell Medical College, New York, NY 3 Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 4 Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, United States 5 School of Mathematics and Statistics, University of Sydney, Sydney, NSW

Received  October 2014 Revised  March 2015 Published  August 2015

Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.
Citation: Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1237-1256. doi: 10.3934/mbe.2015.12.1237
##### References:

show all references

##### References:
 [1] Zizi Wang, Zhiming Guo, Huaqin Peng. Dynamical behavior of a new oncolytic virotherapy model based on gene variation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1079-1093. doi: 10.3934/dcdss.2017058 [2] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066 [3] Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman. The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences & Engineering, 2017, 14 (1) : 305-319. doi: 10.3934/mbe.2017020 [4] Sophia R-J Jang, Hsiu-Chuan Wei. On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3261-3295. doi: 10.3934/dcdsb.2021184 [5] Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587 [6] Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 [7] Jianjun Paul Tian. The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences & Engineering, 2011, 8 (3) : 841-860. doi: 10.3934/mbe.2011.8.841 [8] Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006 [9] Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 [10] Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 [11] Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428 [12] Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 [13] Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 [14] Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 [15] Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 [16] Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057 [17] Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642 [18] Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 [19] José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 [20] Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

2018 Impact Factor: 1.313