2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

Complex rotation numbers

1. 

Institut deMathématiques de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France

2. 

National Research University Higher School of Economics, Miasnitskaya Street 20, Moscow, Russia, and Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, Moscow, Russian Federation

Received  July 2013 Revised  May 2015 Published  September 2015

We investigate the notion of complex rotation number which was introduced by V. I. Arnold in 1978. Let $f:\mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be a (real) analytic orientation preserving circle diffeomorphism and let $\omega\in \mathbb{C}/\mathbb{Z}$ be a parameter with positive imaginary part. Construct a complex torus by glueing the two boundary components of the annulus {$z\in \mathbb{C}/\mathbb{Z} | 0 < Im(z)< Im(\omega)$} via the map $f+\omega$. This complex torus is isomorphic to $\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some appropriate $\tau\in \mathbb{C}/\mathbb{Z}$.
    According to Moldavskis [6], if the ordinary rotation number rot$(f+\omega_0)$ is Diophantine and if $\omega$ tends to $\omega_0$ non tangentially to the real axis, then $\tau$ tends to rot$(f+\omega_0)$. We show that the Diophantine and non tangential assumptions are unnecessary: If rot$(f+\omega_0)$ is irrational, then $\tau$ tends to rot$(f+\omega_0)$ as $\omega$ tends to $\omega_0$.
    This, together with results of N. Goncharuk [4], motivates us to introduce a new fractal set (``bubbles'') given by the limit values of $\tau$ as $\omega$ tends to the real axis. For the rational values of rot $(f+\omega_0)$, these limits do not necessarily coincide with rot $(f+\omega_0)$ and form a countable number of analytic loops in the upper half-plane.
Citation: Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169
References:
[1]

Grund-lehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

Opening Lecture of Spring School "Groups and Dynamics'' at Les Diablerets, March 9, 2008. Slides available from: http://perso.ens-lyon.fr/ghys/articles/diablerets.pdf. Google Scholar

[3]

in Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 467-511.  Google Scholar

[4]

Funct. Anal. Appl., 46 (2012), 11-25. doi: 10.1007/s10688-012-0002-8.  Google Scholar

[5]

Mosc. Math. J., 3 (2003), 531-540, 744.  Google Scholar

[6]

Funct. Anal. Appl., 35 (2001), 234-236. doi: 10.1023/A:1012391215252.  Google Scholar

[7]

Mém. Soc. Math. Fr. (N.S.), (1999), viii+102 pp.  Google Scholar

[8]

Ergodic Theory Dynam. Systems, 12 (1992), 359-363. doi: 10.1017/S0143385700006805.  Google Scholar

[9]

Ann. Sci. École Norm. Sup. (4), 17 (1984), 333-359.  Google Scholar

show all references

References:
[1]

Grund-lehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

Opening Lecture of Spring School "Groups and Dynamics'' at Les Diablerets, March 9, 2008. Slides available from: http://perso.ens-lyon.fr/ghys/articles/diablerets.pdf. Google Scholar

[3]

in Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 467-511.  Google Scholar

[4]

Funct. Anal. Appl., 46 (2012), 11-25. doi: 10.1007/s10688-012-0002-8.  Google Scholar

[5]

Mosc. Math. J., 3 (2003), 531-540, 744.  Google Scholar

[6]

Funct. Anal. Appl., 35 (2001), 234-236. doi: 10.1023/A:1012391215252.  Google Scholar

[7]

Mém. Soc. Math. Fr. (N.S.), (1999), viii+102 pp.  Google Scholar

[8]

Ergodic Theory Dynam. Systems, 12 (1992), 359-363. doi: 10.1017/S0143385700006805.  Google Scholar

[9]

Ann. Sci. École Norm. Sup. (4), 17 (1984), 333-359.  Google Scholar

[1]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[2]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[3]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[4]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[5]

Krzysztof Frączek. Polynomial growth of the derivative for diffeomorphisms on tori. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 489-516. doi: 10.3934/dcds.2004.11.489

[6]

S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30.

[7]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[8]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[9]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[10]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[11]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[12]

Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343

[13]

Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553

[14]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[15]

Hongnian Huang. On the extension and smoothing of the Calabi flow on complex tori. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6153-6164. doi: 10.3934/dcds.2017265

[16]

Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293

[17]

Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645

[18]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[19]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[20]

Meiyu Su. True laminations for complex Hènon maps. Conference Publications, 2003, 2003 (Special) : 834-841. doi: 10.3934/proc.2003.2003.834

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]