2015, 14(6): 2117-2126. doi: 10.3934/cpaa.2015.14.2117

Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50--384 Wrocław

2. 

Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile

3. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław

Received  February 2014 Revised  September 2014 Published  September 2015

As it is well known, the parabolic-elliptic Keller-Segel system of chemotaxis on the plane has global-in-time regular nonnegative solutions with total mass below the critical value $8\pi$. Solutions with mass above $8\pi$ blow up in a finite time. We show that the case of the parabolic-parabolic Keller-Segel is different: each mass may lead to a global-in-time-solution, even if the initial data is a finite signed measure. These solutions need not be unique, even if we limit ourselves to nonnegative solutions.
Citation: Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117
References:
[1]

J. Bedrossian and N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in $\mathbb R^2$ with measure-valued initial data,, Arch. Rational Mech. Anal., 214 (2014), 717. doi: 10.1007/s00205-014-0796-z.

[2]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.

[4]

P. Biler, Radially symmetric solutions of a chemotaxis model in the plane - the supercritical case, in: Parabolic and Navier-Stokes Equations,, Banach Center Publications, 81 (2008), 31. doi: 10.4064/bc81-0-2.

[5]

P. Biler and L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis,, Studia Math., 193 (2009), 241. doi: 10.4064/sm193-3-2.

[6]

P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model,, J. Math. Biology, 63 (2011), 1. doi: 10.1007/s00285-010-0357-5.

[7]

P. Biler, G. Karch, Ph. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane,, Math. Methods in the Applied Sci., 29 (2006), 1563. doi: 10.1002/mma.743.

[8]

A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Functional Anal., 262 (2012), 2142. doi: 10.1016/j.jfa.2011.12.012.

[9]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$,, Comm. Pure Appl. Math., 61 (2008), 1449. doi: 10.1002/cpa.20225.

[10]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 44 (2006).

[11]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$,, Commun. Math. Sci., 6 (2008), 417.

[12]

L. Corrias, M. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane,, J. Differential Equations, 257 (2014), 1840. doi: 10.1016/j.jde.2014.05.019.

[13]

J. Dolbeault and Ch. Schmeiser, The two-dimensional Keller-Segel model after blow-up,, Discrete Contin. Dyn. Syst., 25 (2009), 109. doi: 10.3934/dcds.2009.25.109.

[14]

Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity,, Arch. Rational Mech. Anal., 104 (1988), 223. doi: 10.1007/BF00281355.

[15]

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system,, J. Evol. Equ., 8 (2008), 353. doi: 10.1007/s00028-008-0375-6.

[16]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Eq., 18 (2013), 1189.

[17]

S. Luckhaus, Y. Sugiyama and J. J. L. Vélazquez, Measure valued solutions of the 2D Keller-Segel system,, Arch. Rational Mech. Anal., 206 (2012), 31. doi: 10.1007/s00205-012-0549-9.

[18]

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane,, Calc. Var., 48 (2013), 491. doi: 10.1007/s00526-012-0558-4.

[19]

N. Mizoguchi and M. Winkler, (2013),, personal communication., ().

[20]

Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis; in: Self-similar solutions of nonlinear PDE,, Banach Center Publ., 74 (2006), 149. doi: 10.4064/bc74-0-9.

[21]

A. Raczyński, Stability property of the two-dimensional Keller-Segel model,, Asymptot. Anal., 61 (2009), 35.

[22]

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Functional Anal., 191 (2002), 17. doi: 10.1006/jfan.2001.3802.

[23]

J. J. L. Vélazquez, Point Dynamics in a singular limit of the Keller-Segel model 1: Motion of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1198. doi: 10.1137/S0036139903433888.

show all references

References:
[1]

J. Bedrossian and N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in $\mathbb R^2$ with measure-valued initial data,, Arch. Rational Mech. Anal., 214 (2014), 717. doi: 10.1007/s00205-014-0796-z.

[2]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.

[4]

P. Biler, Radially symmetric solutions of a chemotaxis model in the plane - the supercritical case, in: Parabolic and Navier-Stokes Equations,, Banach Center Publications, 81 (2008), 31. doi: 10.4064/bc81-0-2.

[5]

P. Biler and L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis,, Studia Math., 193 (2009), 241. doi: 10.4064/sm193-3-2.

[6]

P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model,, J. Math. Biology, 63 (2011), 1. doi: 10.1007/s00285-010-0357-5.

[7]

P. Biler, G. Karch, Ph. Laurençot and T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane,, Math. Methods in the Applied Sci., 29 (2006), 1563. doi: 10.1002/mma.743.

[8]

A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Functional Anal., 262 (2012), 2142. doi: 10.1016/j.jfa.2011.12.012.

[9]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$,, Comm. Pure Appl. Math., 61 (2008), 1449. doi: 10.1002/cpa.20225.

[10]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 44 (2006).

[11]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$,, Commun. Math. Sci., 6 (2008), 417.

[12]

L. Corrias, M. Escobedo and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane,, J. Differential Equations, 257 (2014), 1840. doi: 10.1016/j.jde.2014.05.019.

[13]

J. Dolbeault and Ch. Schmeiser, The two-dimensional Keller-Segel model after blow-up,, Discrete Contin. Dyn. Syst., 25 (2009), 109. doi: 10.3934/dcds.2009.25.109.

[14]

Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity,, Arch. Rational Mech. Anal., 104 (1988), 223. doi: 10.1007/BF00281355.

[15]

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system,, J. Evol. Equ., 8 (2008), 353. doi: 10.1007/s00028-008-0375-6.

[16]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Eq., 18 (2013), 1189.

[17]

S. Luckhaus, Y. Sugiyama and J. J. L. Vélazquez, Measure valued solutions of the 2D Keller-Segel system,, Arch. Rational Mech. Anal., 206 (2012), 31. doi: 10.1007/s00205-012-0549-9.

[18]

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane,, Calc. Var., 48 (2013), 491. doi: 10.1007/s00526-012-0558-4.

[19]

N. Mizoguchi and M. Winkler, (2013),, personal communication., ().

[20]

Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis; in: Self-similar solutions of nonlinear PDE,, Banach Center Publ., 74 (2006), 149. doi: 10.4064/bc74-0-9.

[21]

A. Raczyński, Stability property of the two-dimensional Keller-Segel model,, Asymptot. Anal., 61 (2009), 35.

[22]

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Functional Anal., 191 (2002), 17. doi: 10.1006/jfan.2001.3802.

[23]

J. J. L. Vélazquez, Point Dynamics in a singular limit of the Keller-Segel model 1: Motion of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1198. doi: 10.1137/S0036139903433888.

[1]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[2]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[3]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[4]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[5]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[6]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[7]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[8]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[9]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[10]

Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627

[11]

Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141

[12]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[13]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[14]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[15]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[16]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[17]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[18]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[19]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[20]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]