November  2015, 9(4): 391-413. doi: 10.3934/amc.2015.9.391

Probability estimates for fading and wiretap channels from ideal class zeta functions

1. 

Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, FI-00076, Finland, Finland

2. 

Department of Mathematics and Statistics, University of Helsinki, FI-00014, Finland

3. 

Department of Electrical and Computer Systems Engineering, Monash University, P.O. Box 35, Clayton, Victoria 3800, Australia

Received  March 2013 Published  November 2015

In this paper, new probability estimates are derived for ideal lattice codes from totally real number fields using ideal class Dedekind zeta functions. In contrast to previous work on the subject, it is not assumed that the ideal in question is principal. In particular, it is shown that the corresponding inverse norm sum depends not only on the regulator and discriminant of the number field, but also on the values of the ideal class Dedekind zeta functions. Along the way, we derive an estimate of the number of elements in a given ideal with a certain algebraic norm within a finite hypercube. We provide several examples which measure the accuracy and predictive ability of our theorems.
Citation: David Karpuk, Anne-Maria Ernvall-Hytönen, Camilla Hollanti, Emanuele Viterbo. Probability estimates for fading and wiretap channels from ideal class zeta functions. Advances in Mathematics of Communications, 2015, 9 (4) : 391-413. doi: 10.3934/amc.2015.9.391
References:
[1]

, SAGE open source mathematics software system,, , ().   Google Scholar

[2]

J.-C. Belfiore and F. Oggier, Lattice code design for the rayleigh fading wiretap channel,, IEEE International Conference on Communications, (2011), 1.  doi: 10.1109/iccw.2011.5963544.  Google Scholar

[3]

J.-C. Belfiore and F. Oggier, An error probability approach to mimo wiretap channels,, IEEE Trans. on Comm., 61 (2013), 3396.  doi: 10.1109/TCOMM.2013.061913.120278.  Google Scholar

[4]

J.-C. Belfiore and F. Oggier, Secrecy gain: A wiretap lattice code design,, IEEE International Symposium on Information Theory and its Applications, (2010), 174.  doi: 10.1109/ISITA.2010.5650095.  Google Scholar

[5]

J.-C. Belfiore and P. Solé, Unimodular lattices for the gaussian wiretap channel,, IEEE Information Theory Workshop, (2010), 1.  doi: 10.1109/CIG.2010.5592923.  Google Scholar

[6]

J. Ducoat and F. Oggier, An analysis of small dimensional fading wiretap lattice codes,, IEEE International Symposium on Information Theory, (2014), 966.  doi: 10.1109/ISIT.2014.6874976.  Google Scholar

[7]

A.-M. Ernvall-Hytönen and C. Hollanti, On the Eavesdropper's Correct Decision in Gaussian and Fading Wiretap Channels Using Lattice Codes,, IEEE Information Theory Workshop, (2011).   Google Scholar

[8]

C. Hollanti and E. Viterbo, Analysis on Wiretap Lattice Codes and Probability Bounds from Dedekind Zeta Functions,, IEEE International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, (2011).   Google Scholar

[9]

C. Hollanti, E. Viterbo and D. Karpuk, Nonasymptotic probability bounds for fading channels exploiting Dedekind zeta functions,, preprint, ().   Google Scholar

[10]

S. Lang, Algebraic Number Theory,, Second edition. Graduate Texts in Mathematics, (1994).  doi: 10.1007/978-1-4612-0853-2.  Google Scholar

[11]

S. Leung-Yan-Cheong and M. Hellman, The Gaussian wire-tap channel,, IEEE Trans. on Inf. Theory, 24 (1978), 451.  doi: 10.1109/TIT.1978.1055917.  Google Scholar

[12]

F. Oggier, P. Solé and J.-C. Belfiore, Lattice codes for the wiretap gaussian channel: Construction and analysis,, Information Theory, pp (2015).  doi: 10.1109/TIT.2015.2494594.  Google Scholar

[13]

F. Oggier and E. Viterbo, Algebraic number theory and code design for rayleigh fading channels,, Foundations and Trends in Communications and Information Theory, 1 (2004), 333.  doi: 10.1561/0100000003.  Google Scholar

[14]

S. Ong and F. Oggier, Wiretap lattice codes from number fields with no small norm elements,, Designs, 73 (2014), 425.  doi: 10.1007/s10623-014-9935-7.  Google Scholar

[15]

R. Vehkalahti and H.-F. Lu, An algebraic look into MAC-DMT of lattice space-time codes,, IEEE International Symposium on Information Theory, (2011), 2831.  doi: 10.1109/ISIT.2011.6034091.  Google Scholar

[16]

R. Vehkalahti and H.-F. Lu, Diversity-multiplexing gain tradeoff: A tool in algebra?,, IEEE Information Theory Workshop, (2011), 135.  doi: 10.1109/ITW.2011.6089362.  Google Scholar

[17]

R. Vehkalahti, H.-F. Lu and L. Luzzi, Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra,, IEEE Trans. on Inf. Theory, 59 (2013), 6060.  doi: 10.1109/TIT.2013.2266396.  Google Scholar

[18]

R. Vehkalahti and L. Luzzi, Connecting DMT of division algebra space-time codes and point counting in lie groups,, IEEE International Symposium on Information Theory, (2012), 3038.  doi: 10.1109/ISIT.2012.6284119.  Google Scholar

[19]

A. Wyner, The wire-tap channel,, Bell Syst. Tech. Journal, 54 (1975), 1355.  doi: 10.1002/j.1538-7305.1975.tb02040.x.  Google Scholar

show all references

References:
[1]

, SAGE open source mathematics software system,, , ().   Google Scholar

[2]

J.-C. Belfiore and F. Oggier, Lattice code design for the rayleigh fading wiretap channel,, IEEE International Conference on Communications, (2011), 1.  doi: 10.1109/iccw.2011.5963544.  Google Scholar

[3]

J.-C. Belfiore and F. Oggier, An error probability approach to mimo wiretap channels,, IEEE Trans. on Comm., 61 (2013), 3396.  doi: 10.1109/TCOMM.2013.061913.120278.  Google Scholar

[4]

J.-C. Belfiore and F. Oggier, Secrecy gain: A wiretap lattice code design,, IEEE International Symposium on Information Theory and its Applications, (2010), 174.  doi: 10.1109/ISITA.2010.5650095.  Google Scholar

[5]

J.-C. Belfiore and P. Solé, Unimodular lattices for the gaussian wiretap channel,, IEEE Information Theory Workshop, (2010), 1.  doi: 10.1109/CIG.2010.5592923.  Google Scholar

[6]

J. Ducoat and F. Oggier, An analysis of small dimensional fading wiretap lattice codes,, IEEE International Symposium on Information Theory, (2014), 966.  doi: 10.1109/ISIT.2014.6874976.  Google Scholar

[7]

A.-M. Ernvall-Hytönen and C. Hollanti, On the Eavesdropper's Correct Decision in Gaussian and Fading Wiretap Channels Using Lattice Codes,, IEEE Information Theory Workshop, (2011).   Google Scholar

[8]

C. Hollanti and E. Viterbo, Analysis on Wiretap Lattice Codes and Probability Bounds from Dedekind Zeta Functions,, IEEE International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, (2011).   Google Scholar

[9]

C. Hollanti, E. Viterbo and D. Karpuk, Nonasymptotic probability bounds for fading channels exploiting Dedekind zeta functions,, preprint, ().   Google Scholar

[10]

S. Lang, Algebraic Number Theory,, Second edition. Graduate Texts in Mathematics, (1994).  doi: 10.1007/978-1-4612-0853-2.  Google Scholar

[11]

S. Leung-Yan-Cheong and M. Hellman, The Gaussian wire-tap channel,, IEEE Trans. on Inf. Theory, 24 (1978), 451.  doi: 10.1109/TIT.1978.1055917.  Google Scholar

[12]

F. Oggier, P. Solé and J.-C. Belfiore, Lattice codes for the wiretap gaussian channel: Construction and analysis,, Information Theory, pp (2015).  doi: 10.1109/TIT.2015.2494594.  Google Scholar

[13]

F. Oggier and E. Viterbo, Algebraic number theory and code design for rayleigh fading channels,, Foundations and Trends in Communications and Information Theory, 1 (2004), 333.  doi: 10.1561/0100000003.  Google Scholar

[14]

S. Ong and F. Oggier, Wiretap lattice codes from number fields with no small norm elements,, Designs, 73 (2014), 425.  doi: 10.1007/s10623-014-9935-7.  Google Scholar

[15]

R. Vehkalahti and H.-F. Lu, An algebraic look into MAC-DMT of lattice space-time codes,, IEEE International Symposium on Information Theory, (2011), 2831.  doi: 10.1109/ISIT.2011.6034091.  Google Scholar

[16]

R. Vehkalahti and H.-F. Lu, Diversity-multiplexing gain tradeoff: A tool in algebra?,, IEEE Information Theory Workshop, (2011), 135.  doi: 10.1109/ITW.2011.6089362.  Google Scholar

[17]

R. Vehkalahti, H.-F. Lu and L. Luzzi, Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra,, IEEE Trans. on Inf. Theory, 59 (2013), 6060.  doi: 10.1109/TIT.2013.2266396.  Google Scholar

[18]

R. Vehkalahti and L. Luzzi, Connecting DMT of division algebra space-time codes and point counting in lie groups,, IEEE International Symposium on Information Theory, (2012), 3038.  doi: 10.1109/ISIT.2012.6284119.  Google Scholar

[19]

A. Wyner, The wire-tap channel,, Bell Syst. Tech. Journal, 54 (1975), 1355.  doi: 10.1002/j.1538-7305.1975.tb02040.x.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[7]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[8]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

[Back to Top]