2016, 36(6): 3339-3356. doi: 10.3934/dcds.2016.36.3339

On two-sided estimates for the nonlinear Fourier transform of KdV

1. 

Winterthrerstrasse 190, 8057 Zurich, Switzerland

Received  April 2015 Revised  October 2015 Published  December 2015

The KdV-equation $u_t = -u_{xxx} + 6uu_x$ on the circle admits a global nonlinear Fourier transform, also known as Birkhoff map, linearizing the KdV flow. The regularity properties of $u$ are known to be closely related to the decay properties of the corresponding nonlinear Fourier coefficients. In this paper we obtain two-sided polynomial estimates of all integer Sobolev norms $||u||_m$, $m\ge 0$, in terms of the weighted norms of the nonlinear Fourier transformed, which are linear in the highest order.
Citation: Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339
References:
[1]

J. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation,, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555. doi: 10.1098/rsta.1975.0035.

[2]

J. Colliander, T. Tao, M. Keel, G. Staffilani and H. Takaoka, Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$,, J. Amer. Math. Soc., 16 (2003), 705. doi: 10.1090/S0894-0347-03-00421-1.

[3]

J. Colliander, T. Tao, M. Keel, G. Staffilani and H. Takaoka, Multilinear estimates for periodic KdV equations, and applications,, J. Funct. Anal., 211 (2004), 173. doi: 10.1016/S0022-1236(03)00218-0.

[4]

P. Djakov and B. Mityagin, Instability zones of periodic 1-dimensional Schrödinger and Dirac operators,, Russian Math. Surveys, 61 (2006), 663. doi: 10.1070/RM2006v061n04ABEH004343.

[5]

H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions,, Progr. Theoret. Phys., 55 (1976), 438. doi: 10.1143/PTP.55.438.

[6]

B. Grébert and T. Kappeler, The Defocusing NLS Equation and Its Normal Form,, European Mathematical Society (EMS), (2014). doi: 10.4171/131.

[7]

T. Kappeler, A. Maspero, J.-C. Molnar and P. Topalov, On the convexity of the KdV Hamiltonian,, , ().

[8]

T. Kappeler and B. Mityagin, Gap estimates of the spectrum of Hill's equation and action variables for KdV,, Trans. Amer. Math. Soc., 351 (1999), 619. doi: 10.1090/S0002-9947-99-02186-8.

[9]

T. Kappeler and B. Mityagin, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator,, SIAM J. Math. Anal., 33 (2001), 113. doi: 10.1137/S0036141099365753.

[10]

T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions,, Selecta Math. (N.S.), 11 (2005), 37. doi: 10.1007/s00029-005-0009-6.

[11]

T. Kappeler and J. Pöschel, KdV & KAM,, Springer, (2003). doi: 10.1007/978-3-662-08054-2.

[12]

T. Kappeler and J. Pöschel, On the periodic KdV equation in weighted Sobolev spaces,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 841. doi: 10.1016/j.anihpc.2008.03.004.

[13]

T. Kappeler, B. Schaad and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators,, in Spectral Geometry, (2012), 243. doi: 10.1090/pspum/084/1360.

[14]

E. Korotyaev, Estimates for the Hill operator. I,, J. Differential Equations, 162 (2000), 1. doi: 10.1006/jdeq.1999.3684.

[15]

E. Korotyaev, Estimates for the Hill operator. II,, J. Differential Equations, 223 (2006), 229. doi: 10.1016/j.jde.2005.04.017.

[16]

V. A. Marčenko and I. V. Ostrovs ki, A characterization of the spectrum of the Hill operator,, Mat. Sb. (N.S.), 97(139) (1975), 540.

[17]

H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation,, Invent. Math., 30 (1975), 217. doi: 10.1007/BF01425567.

[18]

H. P. McKean and K. L. Vaninsky, Action-angle variables for the cubic Schrödinger equation,, Comm. Pure Appl. Math., 50 (1997), 489. doi: 10.1002/(SICI)1097-0312(199706)50:6<489::AID-CPA1>3.0.CO;2-4.

[19]

J.-C. Molnar, New estimates of the nonlinear Fourier transform for the defocusing NLS equation,, Int. Math. Res. Not., 2015 (2015), 8309. doi: 10.1093/imrn/rnu208.

[20]

J.-C. Molnar, New estimates of the nonlinear Fourier transform for the defocusing NLS equation,, \arXiv{1403.1369}., (). doi: 10.1093/imrn/rnu208.

[21]

J.-C. Molnar, On two-sided estimates for the nonlinear fourier transform of KdV,, , ().

[22]

J. Pöschel, Hill's potentials in weighted Sobolev spaces and their spectral gaps,, Math. Ann., 349 (2011), 433. doi: 10.1007/s00208-010-0513-7.

[23]

T. Tao, J. Colliander, M. Keel, G. Staffilani and H. Takaoka, Global well-posedness for KdV in Sobolev spaces of negative index,, Electron. J. Differential Equations, (2011), 1.

show all references

References:
[1]

J. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation,, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555. doi: 10.1098/rsta.1975.0035.

[2]

J. Colliander, T. Tao, M. Keel, G. Staffilani and H. Takaoka, Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$,, J. Amer. Math. Soc., 16 (2003), 705. doi: 10.1090/S0894-0347-03-00421-1.

[3]

J. Colliander, T. Tao, M. Keel, G. Staffilani and H. Takaoka, Multilinear estimates for periodic KdV equations, and applications,, J. Funct. Anal., 211 (2004), 173. doi: 10.1016/S0022-1236(03)00218-0.

[4]

P. Djakov and B. Mityagin, Instability zones of periodic 1-dimensional Schrödinger and Dirac operators,, Russian Math. Surveys, 61 (2006), 663. doi: 10.1070/RM2006v061n04ABEH004343.

[5]

H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions,, Progr. Theoret. Phys., 55 (1976), 438. doi: 10.1143/PTP.55.438.

[6]

B. Grébert and T. Kappeler, The Defocusing NLS Equation and Its Normal Form,, European Mathematical Society (EMS), (2014). doi: 10.4171/131.

[7]

T. Kappeler, A. Maspero, J.-C. Molnar and P. Topalov, On the convexity of the KdV Hamiltonian,, , ().

[8]

T. Kappeler and B. Mityagin, Gap estimates of the spectrum of Hill's equation and action variables for KdV,, Trans. Amer. Math. Soc., 351 (1999), 619. doi: 10.1090/S0002-9947-99-02186-8.

[9]

T. Kappeler and B. Mityagin, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator,, SIAM J. Math. Anal., 33 (2001), 113. doi: 10.1137/S0036141099365753.

[10]

T. Kappeler, C. Möhr and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions,, Selecta Math. (N.S.), 11 (2005), 37. doi: 10.1007/s00029-005-0009-6.

[11]

T. Kappeler and J. Pöschel, KdV & KAM,, Springer, (2003). doi: 10.1007/978-3-662-08054-2.

[12]

T. Kappeler and J. Pöschel, On the periodic KdV equation in weighted Sobolev spaces,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 841. doi: 10.1016/j.anihpc.2008.03.004.

[13]

T. Kappeler, B. Schaad and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators,, in Spectral Geometry, (2012), 243. doi: 10.1090/pspum/084/1360.

[14]

E. Korotyaev, Estimates for the Hill operator. I,, J. Differential Equations, 162 (2000), 1. doi: 10.1006/jdeq.1999.3684.

[15]

E. Korotyaev, Estimates for the Hill operator. II,, J. Differential Equations, 223 (2006), 229. doi: 10.1016/j.jde.2005.04.017.

[16]

V. A. Marčenko and I. V. Ostrovs ki, A characterization of the spectrum of the Hill operator,, Mat. Sb. (N.S.), 97(139) (1975), 540.

[17]

H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation,, Invent. Math., 30 (1975), 217. doi: 10.1007/BF01425567.

[18]

H. P. McKean and K. L. Vaninsky, Action-angle variables for the cubic Schrödinger equation,, Comm. Pure Appl. Math., 50 (1997), 489. doi: 10.1002/(SICI)1097-0312(199706)50:6<489::AID-CPA1>3.0.CO;2-4.

[19]

J.-C. Molnar, New estimates of the nonlinear Fourier transform for the defocusing NLS equation,, Int. Math. Res. Not., 2015 (2015), 8309. doi: 10.1093/imrn/rnu208.

[20]

J.-C. Molnar, New estimates of the nonlinear Fourier transform for the defocusing NLS equation,, \arXiv{1403.1369}., (). doi: 10.1093/imrn/rnu208.

[21]

J.-C. Molnar, On two-sided estimates for the nonlinear fourier transform of KdV,, , ().

[22]

J. Pöschel, Hill's potentials in weighted Sobolev spaces and their spectral gaps,, Math. Ann., 349 (2011), 433. doi: 10.1007/s00208-010-0513-7.

[23]

T. Tao, J. Colliander, M. Keel, G. Staffilani and H. Takaoka, Global well-posedness for KdV in Sobolev spaces of negative index,, Electron. J. Differential Equations, (2011), 1.

[1]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[2]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[3]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[4]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[5]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[6]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[7]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[8]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[9]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[10]

Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857

[11]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[12]

Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024

[13]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[15]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[16]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[17]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[18]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[19]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

[20]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure & Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]