-
Previous Article
Multi-criteria media mix decision model for advertising a single product with segment specific and mass media
- JIMO Home
- This Issue
-
Next Article
An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest
A subgradient-based convex approximations method for DC programming and its applications
1. | School of Sciences, Dalian Ocean University, Dalian 116023, China |
2. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116023 |
References:
[1] |
L. T. H. An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints,, Math. Program., 87 (2000), 401.
doi: 10.1007/s101070050003. |
[2] |
L. T. H. An, L. H. Minh and P. D. Tao, Optimization based DC programming and DCA for hierarchical clustering,, European J. Oper. Res., 183 (2007), 1067.
doi: 10.1016/j.ejor.2005.07.028. |
[3] |
L. T. H. An and P. D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems,, Ann. Oper. Res., 133 (2005), 23.
doi: 10.1007/s10479-004-5022-1. |
[4] |
C. Audet, P. Hansen, B. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming,, Math. Program., 87 (2000), 131.
|
[5] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, {Springer, (2000).
doi: 10.1007/978-1-4612-1394-9. |
[6] |
D. H. Fang, C. Li and X. Q. Yang, Asymptotic closure condition and Fenchel duality for DC optimization problems in locally convex spaces,, Nonliner Anal., 75 (2012), 3672.
doi: 10.1016/j.na.2012.01.023. |
[7] |
M. Fazel, Matrix Rank Minimization with Applications,, PhD thesis, (2002). Google Scholar |
[8] |
Y. Gao, Structured Low Rank Matrix Optimization Problems: A Penalty Approach,, PhD thesis, (2010). Google Scholar |
[9] |
S. He, Z. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization,, SIAM J. Optim., 19 (2008), 503.
doi: 10.1137/070679041. |
[10] |
L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach,, Oper. Res., 59 (2011), 617.
doi: 10.1287/opre.1100.0910. |
[11] |
R. Horst and N. V. Thoni, DC programming: Overview,, J. Optim. Theory Appl., 103 (1999), 1.
doi: 10.1023/A:1021765131316. |
[12] |
Z. Luo, W. Ma, A. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems,, IEEE Signal Process Mag., 27 (2010), 20.
doi: 10.1109/MSP.2010.936019. |
[13] |
Z. Luo, N. Sidiropoulos, P. Tseng and S. Zhang, Approximation bounds for quadratic optimization with homogeneous quadratic constraints,, SIAM J. Optim., 18 (2007), 1.
doi: 10.1137/050642691. |
[14] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory,, Springer, (2006).
|
[15] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM J. Optim., 17 (2006), 969.
doi: 10.1137/050622328. |
[16] |
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,, SIAM Rev., 52 (2010), 471.
doi: 10.1137/070697835. |
[17] |
R. T. Rockafellar and R. J. B. Wets, Variational Analysis,, Springer, (1998).
doi: 10.1007/978-3-642-02431-3. |
[18] |
W. Schirotzek, Nonsmooth Analysis,, Springer, (2007).
doi: 10.1007/978-3-540-71333-3. |
[19] |
F. Shan, L. Zhang and X. Xiao, A smoothing function approach to joint chance-constrained programs,, J. Optim. Theory Appl., 59 (2014), 181.
doi: 10.1007/s10957-013-0513-3. |
[20] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory,, SIAM, (2009).
doi: 10.1137/1.9780898718751. |
[21] |
N. Sidiropoulos, T. Davidson and Z. Luo, Transmit beamforming for physical-layer multicasting,, IEEE Trans. Signal Process., 54 (2006), 2239.
doi: 10.1109/TSP.2006.872578. |
[22] |
N. V. Thoai, Reverse convex programming approach in the space of extreme criteria for optimization over efficient sets,, J. Optim. Theory Appl., 147 (2010), 263.
doi: 10.1007/s10957-010-9721-2. |
[23] |
X. Xiao, J. Gu, L. Zhang and S. Zhang, A sequential convex program method to DC program with joint chance constraints,, J. Ind. Manag. Optim., 8 (2012), 733.
doi: 10.3934/jimo.2012.8.733. |
show all references
References:
[1] |
L. T. H. An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints,, Math. Program., 87 (2000), 401.
doi: 10.1007/s101070050003. |
[2] |
L. T. H. An, L. H. Minh and P. D. Tao, Optimization based DC programming and DCA for hierarchical clustering,, European J. Oper. Res., 183 (2007), 1067.
doi: 10.1016/j.ejor.2005.07.028. |
[3] |
L. T. H. An and P. D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems,, Ann. Oper. Res., 133 (2005), 23.
doi: 10.1007/s10479-004-5022-1. |
[4] |
C. Audet, P. Hansen, B. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming,, Math. Program., 87 (2000), 131.
|
[5] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, {Springer, (2000).
doi: 10.1007/978-1-4612-1394-9. |
[6] |
D. H. Fang, C. Li and X. Q. Yang, Asymptotic closure condition and Fenchel duality for DC optimization problems in locally convex spaces,, Nonliner Anal., 75 (2012), 3672.
doi: 10.1016/j.na.2012.01.023. |
[7] |
M. Fazel, Matrix Rank Minimization with Applications,, PhD thesis, (2002). Google Scholar |
[8] |
Y. Gao, Structured Low Rank Matrix Optimization Problems: A Penalty Approach,, PhD thesis, (2010). Google Scholar |
[9] |
S. He, Z. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization,, SIAM J. Optim., 19 (2008), 503.
doi: 10.1137/070679041. |
[10] |
L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach,, Oper. Res., 59 (2011), 617.
doi: 10.1287/opre.1100.0910. |
[11] |
R. Horst and N. V. Thoni, DC programming: Overview,, J. Optim. Theory Appl., 103 (1999), 1.
doi: 10.1023/A:1021765131316. |
[12] |
Z. Luo, W. Ma, A. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems,, IEEE Signal Process Mag., 27 (2010), 20.
doi: 10.1109/MSP.2010.936019. |
[13] |
Z. Luo, N. Sidiropoulos, P. Tseng and S. Zhang, Approximation bounds for quadratic optimization with homogeneous quadratic constraints,, SIAM J. Optim., 18 (2007), 1.
doi: 10.1137/050642691. |
[14] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory,, Springer, (2006).
|
[15] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM J. Optim., 17 (2006), 969.
doi: 10.1137/050622328. |
[16] |
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,, SIAM Rev., 52 (2010), 471.
doi: 10.1137/070697835. |
[17] |
R. T. Rockafellar and R. J. B. Wets, Variational Analysis,, Springer, (1998).
doi: 10.1007/978-3-642-02431-3. |
[18] |
W. Schirotzek, Nonsmooth Analysis,, Springer, (2007).
doi: 10.1007/978-3-540-71333-3. |
[19] |
F. Shan, L. Zhang and X. Xiao, A smoothing function approach to joint chance-constrained programs,, J. Optim. Theory Appl., 59 (2014), 181.
doi: 10.1007/s10957-013-0513-3. |
[20] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory,, SIAM, (2009).
doi: 10.1137/1.9780898718751. |
[21] |
N. Sidiropoulos, T. Davidson and Z. Luo, Transmit beamforming for physical-layer multicasting,, IEEE Trans. Signal Process., 54 (2006), 2239.
doi: 10.1109/TSP.2006.872578. |
[22] |
N. V. Thoai, Reverse convex programming approach in the space of extreme criteria for optimization over efficient sets,, J. Optim. Theory Appl., 147 (2010), 263.
doi: 10.1007/s10957-010-9721-2. |
[23] |
X. Xiao, J. Gu, L. Zhang and S. Zhang, A sequential convex program method to DC program with joint chance constraints,, J. Ind. Manag. Optim., 8 (2012), 733.
doi: 10.3934/jimo.2012.8.733. |
[1] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[2] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[3] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[4] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[5] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[6] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[7] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[8] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[9] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[10] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[11] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[12] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[13] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[14] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[15] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004 |
[16] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[17] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[18] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[19] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[20] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]