-
Previous Article
A relaxation result for state constrained inclusions in infinite dimension
- MCRF Home
- This Issue
-
Next Article
Optimal sampled-data control, and generalizations on time scales
Optimal control for a phase field system with a possibly singular potential
1. | Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia |
2. | "Gheorghe Mihoc-Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy (ISMMA), Calea 13 Septembrie 13, 050711 Bucharest, Romania |
3. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin |
References:
[1] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. |
[2] |
V. Barbu, M. L. Bernardi, P. Colli and G. Gilardi, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001), 557-585.
doi: 10.1023/A:1017563604922. |
[3] |
K. N. Blazakis, A. Madzvamuse, C. C. Reyes-Aldasoro, V. Styles and C. Venkataraman, Whole cell tracking through the optimal control of geometric evolution laws, J. Comput. Phys., 297 (2015), 495-514.
doi: 10.1016/j.jcp.2015.05.014. |
[4] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. I. Mathematical Analysis, European J. Appl. Math., 2 (1991), 233-280.
doi: 10.1017/S095679250000053X. |
[5] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical Analysis, European J. Appl. Math., 3 (1992), 147-179.
doi: 10.1017/S0956792500000759. |
[6] |
J. L. Boldrini, B. M. C. Caretta and E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010), 49-75.
doi: 10.1007/s13163-009-0012-0. |
[7] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973. |
[8] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[9] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[10] |
L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12-27.
doi: 10.1016/j.na.2012.11.010. |
[11] |
L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. |
[12] |
P. Colli, M. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1-24.
doi: 10.1007/s00245-014-9250-8. |
[13] |
P. Colli, G. Gilardi and G. Marinoschi, A boundary control problem for a possibly singular phase field system with dynamic boundary conditions, J. Math. Anal. Appl., 434 (2016), 432-463, (see also preprint arXiv:1501.04517 [math.AP] (2015), pp. 1-32).
doi: 10.1016/j.jmaa.2015.09.011. |
[14] |
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Optimal control for a conserved phase field system with general potentials,, in preparation., ().
|
[15] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn, 24 (2012), 437-459.
doi: 10.1007/s00161-011-0215-8. |
[16] |
P. Colli, G. Gilardi and J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012), 119-149.
doi: 10.1007/s00032-012-0181-z. |
[17] |
P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325, (see also arXiv:1503.03213 [math.AP] (2015), pp. 1-18).
doi: 10.1515/anona-2015-0035. |
[18] |
P. Colli, G. Marinoschi and E. Rocca, Sharp interface control in a Penrose-Fife model, ESAIM Control Optim. Calc. Var., (see also preprint arXiv:1403.4446 [math.AP] (2014), pp. 1-33).
doi: 10.1051/cocv/2015014. |
[19] |
P. Colli and J. Sprekels, Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53 (2015), 213-234.
doi: 10.1137/120902422. |
[20] |
M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.
doi: 10.1007/BF01385847. |
[21] |
A. Damlamian, N. Kenmochi and N. Sato, Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation, Nonlinear Anal., 23 (1994), 115-142.
doi: 10.1016/0362-546X(94)90255-0. |
[22] |
C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations, in Free boundary problems, Internat. Ser. Numer. Math., Birkhäuser Verlag, Basel, 95 (1990), 46-58. |
[23] |
M. H. Farshbaf-Shaker, A penalty approach to optimal control of Allen-Cahn variational inequalities: MPEC-view, Numer. Funct. Anal. Optim., 33 (2012), 1321-1349.
doi: 10.1080/01630563.2012.672354. |
[24] |
M. H. Farshbaf-Shaker and C. Hecht, Optimal control of elastic vector-valued Allen-Cahn variational inequalities, WIAS Preprint, 1858 (2013), 1-20. |
[25] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.
doi: 10.3934/cpaa.2009.8.881. |
[26] |
G. Gilardi, A. Miranville and G. Schimperna, Long-time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.
doi: 10.1007/s11401-010-0602-7. |
[27] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[28] |
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277. |
[29] |
K.-H. Hoffmann and L. S. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992), 11-27.
doi: 10.1080/01630569208816458. |
[30] |
K.-H. Hoffmann, N. Kenmochi, M. Kubo and N. Yamazaki, Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17 (2007), 305-336. |
[31] |
N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising phase change problems, Nonlinear Anal., 22 (1994), 1163-1180.
doi: 10.1016/0362-546X(94)90235-6. |
[32] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Trans. Amer. Math. Soc., 23, Amer. Math. Soc., Providence, RI, 1968. |
[33] |
Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167-185.
doi: 10.1017/S0308210500030663. |
[34] |
C. Lefter and J. Sprekels, Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007), 181-194. |
[35] |
J.-L. Lions, Équations Différentielles Opérationnelles et Problèmes Aux Limites, Grundlehren, Band 111, Springer-Verlag, Berlin, 1961. |
[36] |
A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003-1008.
doi: 10.1016/j.aml.2011.01.016. |
[37] |
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.
doi: 10.1002/mma.464. |
[38] |
G. Schimperna, Abstract approach to evolution equations of phase field type and applications, J. Differential Equations, 164 (2000), 395-430.
doi: 10.1006/jdeq.1999.3753. |
[39] |
K. Shirakawa and N. Yamazaki, Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18 (2013), 309-350. |
[40] |
J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[41] |
J. Sprekels and S. Zheng, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992), 113-125. |
show all references
References:
[1] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. |
[2] |
V. Barbu, M. L. Bernardi, P. Colli and G. Gilardi, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001), 557-585.
doi: 10.1023/A:1017563604922. |
[3] |
K. N. Blazakis, A. Madzvamuse, C. C. Reyes-Aldasoro, V. Styles and C. Venkataraman, Whole cell tracking through the optimal control of geometric evolution laws, J. Comput. Phys., 297 (2015), 495-514.
doi: 10.1016/j.jcp.2015.05.014. |
[4] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. I. Mathematical Analysis, European J. Appl. Math., 2 (1991), 233-280.
doi: 10.1017/S095679250000053X. |
[5] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical Analysis, European J. Appl. Math., 3 (1992), 147-179.
doi: 10.1017/S0956792500000759. |
[6] |
J. L. Boldrini, B. M. C. Caretta and E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010), 49-75.
doi: 10.1007/s13163-009-0012-0. |
[7] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973. |
[8] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[9] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[10] |
L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12-27.
doi: 10.1016/j.na.2012.11.010. |
[11] |
L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. |
[12] |
P. Colli, M. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1-24.
doi: 10.1007/s00245-014-9250-8. |
[13] |
P. Colli, G. Gilardi and G. Marinoschi, A boundary control problem for a possibly singular phase field system with dynamic boundary conditions, J. Math. Anal. Appl., 434 (2016), 432-463, (see also preprint arXiv:1501.04517 [math.AP] (2015), pp. 1-32).
doi: 10.1016/j.jmaa.2015.09.011. |
[14] |
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Optimal control for a conserved phase field system with general potentials,, in preparation., ().
|
[15] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn, 24 (2012), 437-459.
doi: 10.1007/s00161-011-0215-8. |
[16] |
P. Colli, G. Gilardi and J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012), 119-149.
doi: 10.1007/s00032-012-0181-z. |
[17] |
P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325, (see also arXiv:1503.03213 [math.AP] (2015), pp. 1-18).
doi: 10.1515/anona-2015-0035. |
[18] |
P. Colli, G. Marinoschi and E. Rocca, Sharp interface control in a Penrose-Fife model, ESAIM Control Optim. Calc. Var., (see also preprint arXiv:1403.4446 [math.AP] (2014), pp. 1-33).
doi: 10.1051/cocv/2015014. |
[19] |
P. Colli and J. Sprekels, Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53 (2015), 213-234.
doi: 10.1137/120902422. |
[20] |
M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.
doi: 10.1007/BF01385847. |
[21] |
A. Damlamian, N. Kenmochi and N. Sato, Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation, Nonlinear Anal., 23 (1994), 115-142.
doi: 10.1016/0362-546X(94)90255-0. |
[22] |
C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations, in Free boundary problems, Internat. Ser. Numer. Math., Birkhäuser Verlag, Basel, 95 (1990), 46-58. |
[23] |
M. H. Farshbaf-Shaker, A penalty approach to optimal control of Allen-Cahn variational inequalities: MPEC-view, Numer. Funct. Anal. Optim., 33 (2012), 1321-1349.
doi: 10.1080/01630563.2012.672354. |
[24] |
M. H. Farshbaf-Shaker and C. Hecht, Optimal control of elastic vector-valued Allen-Cahn variational inequalities, WIAS Preprint, 1858 (2013), 1-20. |
[25] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.
doi: 10.3934/cpaa.2009.8.881. |
[26] |
G. Gilardi, A. Miranville and G. Schimperna, Long-time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.
doi: 10.1007/s11401-010-0602-7. |
[27] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[28] |
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277. |
[29] |
K.-H. Hoffmann and L. S. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992), 11-27.
doi: 10.1080/01630569208816458. |
[30] |
K.-H. Hoffmann, N. Kenmochi, M. Kubo and N. Yamazaki, Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17 (2007), 305-336. |
[31] |
N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising phase change problems, Nonlinear Anal., 22 (1994), 1163-1180.
doi: 10.1016/0362-546X(94)90235-6. |
[32] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Trans. Amer. Math. Soc., 23, Amer. Math. Soc., Providence, RI, 1968. |
[33] |
Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167-185.
doi: 10.1017/S0308210500030663. |
[34] |
C. Lefter and J. Sprekels, Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007), 181-194. |
[35] |
J.-L. Lions, Équations Différentielles Opérationnelles et Problèmes Aux Limites, Grundlehren, Band 111, Springer-Verlag, Berlin, 1961. |
[36] |
A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003-1008.
doi: 10.1016/j.aml.2011.01.016. |
[37] |
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.
doi: 10.1002/mma.464. |
[38] |
G. Schimperna, Abstract approach to evolution equations of phase field type and applications, J. Differential Equations, 164 (2000), 395-430.
doi: 10.1006/jdeq.1999.3753. |
[39] |
K. Shirakawa and N. Yamazaki, Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18 (2013), 309-350. |
[40] |
J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[41] |
J. Sprekels and S. Zheng, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992), 113-125. |
[1] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations and Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006 |
[2] |
Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67 |
[3] |
Bosheng Chen, Huilai Li, Changchun Liu. Optimal distributed control for a coupled phase-field system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1789-1825. doi: 10.3934/dcdsb.2021110 |
[4] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations and Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003 |
[5] |
Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations and Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011 |
[6] |
Ahmad Makki, Alain Miranville, Georges Sadaka. On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1341-1365. doi: 10.3934/dcdsb.2019019 |
[7] |
Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 279-291. doi: 10.3934/naco.2021005 |
[8] |
Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949 |
[9] |
Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure and Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367 |
[10] |
Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132 |
[11] |
Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485 |
[12] |
Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 |
[13] |
Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040 |
[14] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[15] |
Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119 |
[16] |
Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089 |
[17] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261 |
[18] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[19] |
Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1 |
[20] |
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]