2016, 10(1): 151-162. doi: 10.3934/amc.2016.10.151

Further results on fibre products of Kummer covers and curves with many points over finite fields

1. 

Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Dumlupnar Bulvar, 06800, Ankara, Turkey

2. 

Department of Mathematics, Atlm University, Incek, Golbas, 06836, Ankara, Turkey

3. 

Department of Mathematics, Hacettepe University, Beytepe, 06800, Ankara, Turkey

Received  December 2014 Revised  December 2015 Published  March 2016

We study fibre products of an arbitrary number of Kummer covers of the projective line over $\mathbb{F}_q$ under suitable weak assumptions. If $q-1 = r^a$ for some prime $r$, then we completely determine the number of rational points over a rational point of the projective line. Using this result we obtain explicit examples of fibre products of three Kummer covers supplying new entries for the current table of curves with many points (http://www.manypoints.org, October 31 2015).
Citation: Ferruh Özbudak, Burcu Gülmez Temür, Oǧuz Yayla. Further results on fibre products of Kummer covers and curves with many points over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 151-162. doi: 10.3934/amc.2016.10.151
References:
[1]

A. Garcia and A. Garzon, On Kummer covers with many rational points over finite fields,, J. Pure Appl. Algebra, 185 (2003), 177. doi: 10.1016/S0022-4049(03)00110-5.

[2]

G. van der Geer and M. van der Vlugt, Tables of curves with many points,, Math. Comput., 69 (2000), 797. doi: 10.1090/S0025-5718-99-01143-6.

[3]

J. W. P. Hirschfeld, Projective Geometries over Finite Fields,, 2nd edition, (1998).

[4]

J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves over a Finite Field,, Princeton Univ. Press, (2008).

[5]

B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, (1981).

[6]

M. Q. Kawakita, Kummer curves and their fibre products with many rational points,, Appl. Algebra Engrg. Comm. Comput., 14 (2003), 55.

[7]

H. Niederreiter and C. Xing, Rational Points on Curves over Finite Fields,, Cambridge Univ. Press, (2001). doi: 10.1017/CBO9781107325951.

[8]

H. Niederreiter and C. Xing, Algebraic Geometry in Coding Theory and Cryptography,, Princeton Univ. Press, (2009).

[9]

F. Özbudak and H. Stichtenoth, Curves with many points and configurations of hyperplanes over finite fields,, Finite Fields Appl., 5 (1999), 436. doi: 10.1006/ffta.1999.0262.

[10]

F. Özbudak and B. G. Temür, Finite number of fibre products of Kummer covers and curves with many points over finite fields,, Des. Codes Crypt., 70 (2014), 385. doi: 10.1007/s10623-012-9706-2.

[11]

H. Stichtenoth, Algebraic Function Fields and Codes,, Springer, (1993).

[12]

M. A. Tsfasman, S. G. Vlădut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, Amer. Math. Soc., (2007). doi: 10.1090/surv/139.

[13]

, Manypoints-Table of Curves with Many Points,, available online at , ().

show all references

References:
[1]

A. Garcia and A. Garzon, On Kummer covers with many rational points over finite fields,, J. Pure Appl. Algebra, 185 (2003), 177. doi: 10.1016/S0022-4049(03)00110-5.

[2]

G. van der Geer and M. van der Vlugt, Tables of curves with many points,, Math. Comput., 69 (2000), 797. doi: 10.1090/S0025-5718-99-01143-6.

[3]

J. W. P. Hirschfeld, Projective Geometries over Finite Fields,, 2nd edition, (1998).

[4]

J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves over a Finite Field,, Princeton Univ. Press, (2008).

[5]

B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, (1981).

[6]

M. Q. Kawakita, Kummer curves and their fibre products with many rational points,, Appl. Algebra Engrg. Comm. Comput., 14 (2003), 55.

[7]

H. Niederreiter and C. Xing, Rational Points on Curves over Finite Fields,, Cambridge Univ. Press, (2001). doi: 10.1017/CBO9781107325951.

[8]

H. Niederreiter and C. Xing, Algebraic Geometry in Coding Theory and Cryptography,, Princeton Univ. Press, (2009).

[9]

F. Özbudak and H. Stichtenoth, Curves with many points and configurations of hyperplanes over finite fields,, Finite Fields Appl., 5 (1999), 436. doi: 10.1006/ffta.1999.0262.

[10]

F. Özbudak and B. G. Temür, Finite number of fibre products of Kummer covers and curves with many points over finite fields,, Des. Codes Crypt., 70 (2014), 385. doi: 10.1007/s10623-012-9706-2.

[11]

H. Stichtenoth, Algebraic Function Fields and Codes,, Springer, (1993).

[12]

M. A. Tsfasman, S. G. Vlădut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, Amer. Math. Soc., (2007). doi: 10.1090/surv/139.

[13]

, Manypoints-Table of Curves with Many Points,, available online at , ().

[1]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

[2]

Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107-120. doi: 10.3934/amc.2012.6.107

[3]

Motoko Qiu Kawakita. Certain sextics with many rational points. Advances in Mathematics of Communications, 2017, 11 (2) : 289-292. doi: 10.3934/amc.2017020

[4]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[5]

Nazar Arakelian, Saeed Tafazolian, Fernando Torres. On the spectrum for the genera of maximal curves over small fields. Advances in Mathematics of Communications, 2018, 12 (1) : 143-149. doi: 10.3934/amc.2018009

[6]

Josep M. Miret, Jordi Pujolàs, Anna Rio. Explicit 2-power torsion of genus 2 curves over finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 155-168. doi: 10.3934/amc.2010.4.155

[7]

Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353

[8]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[9]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[10]

Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203

[11]

Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022

[12]

Peter Birkner, Nicolas Thériault. Efficient halving for genus 3 curves over binary fields. Advances in Mathematics of Communications, 2010, 4 (1) : 23-47. doi: 10.3934/amc.2010.4.23

[13]

Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033

[14]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[15]

Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63

[16]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[17]

Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347

[18]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[19]

Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415

[20]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

[Back to Top]