2016, 3(1): 75-100. doi: 10.3934/jdg.2016004

Local market structure in a Hotelling town

1. 

LIAAD INESC TEC and Department of Mathematics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

2. 

LIAAD-INESC TEC and Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. 

Department of Mathematics, University of Minho, Campus de Gualtar Braga, Portugal

Received  October 2015 Revised  January 2016 Published  March 2016

We develop a theoretical framework to study the location-price competition in a Hotelling-type network game, extending the Hotelling model, with linear transportation costs, from a line (city) to a network (town). We show the existence of a pure Nash equilibrium price if, and only if, some explicit conditions on the production costs and on the network structure hold. Furthermore, we prove that the local optimal localization of the firms are at the cross-roads of the town.
Citation: Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics & Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004
References:
[1]

V. Aguirregabiria and G. Vicentini, Dynamic spatial competition between multi-store firms,, mimeo., (2015).

[2]

C. D'Aspermont, J. Gabszewicz and J. F. Thisse, On Hotelling's "Stability in competition'',, Econometrica, 47 (1979), 1145. doi: 10.2307/1911955.

[3]

F. Bloch and N. Quérou, Pricing in social networks,, Games Econom. Behav., 80 (2013), 243. doi: 10.1016/j.geb.2013.03.006.

[4]

Y. Bramoullé, R. Kranton and M. D'Amours, Strategic interaction and networks,, American Economic Review, 104 (2012), 898.

[5]

T. H. Colding and W. P. Minicozzi, Minimal Surfaces,, Courant Lecture Notes in Math, (1999).

[6]

Y. Chen and M. H. Riordan, Price and variety in the spokes model,, Economic Journal, 117 (2007), 897. doi: 10.1111/j.1468-0297.2007.02063.x.

[7]

G. Fournier and M. Scarsini, Hotelling's Games on Networks: Efficiency of Equilibria,, Centre d'Economie de la Sorbone, (2014).

[8]

A. Galeotti, S. Goyal and M. Jackson and F. Vega-Redondo and L. Yariv, Network games,, The Review of Economic Studies, 77 (2010), 218. doi: 10.1111/j.1467-937X.2009.00570.x.

[9]

A. Galeotti and F. Vega-Redondo, Complex networks and local externalities: A strategic approach,, International Journal of Economic Theory, 7 (2011), 77. doi: 10.1111/j.1742-7363.2010.00149.x.

[10]

S. Goyal, Connections: An introduction to the Economics of Networks,, Princeton University Press, (2007).

[11]

R. Gulliver, Removability of singular points on surfaces of bounded mean curvature,, The Journal of Differential Geometry, 11 (1976), 345.

[12]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11. doi: 10.2307/2098001.

[13]

H. Hotelling, Stability in competition,, The Economic Journal, 39 (1929), 41.

[14]

M. Jorge and W. Maldonado, Price Differentiation and Menu Costs in Credit Card Payments,, ANU Working Papers in Economics and Econometrics 2012-592, (2012), 2012.

[15]

V. Mazalov and M. Sakaguchi, Location game on the plane,, International Game Theory Review, 5 (2003), 13. doi: 10.1142/S0219198903000854.

[16]

T. Miller, R. L. Tobin and T. L. Friesz, Network facility-location models in stackelberg-nash-cournot spatial competition,, Papers in Regional Science, 71 (1992), 277.

[17]

M. J. Osborne and C. Pitchick, Equilibrium in hotelling's model of spatial competition,, Econometrica, 55 (1987), 911. doi: 10.2307/1911035.

[18]

D. Palvogyi, Hotelling on graphs,, mimeo, (2011).

[19]

A. A. Pinto and T. Parreira, A hotelling-type network,, in Dynamics, 1 (2011), 709. doi: 10.1007/978-3-642-11456-4_45.

[20]

A. A. Pinto and T. Parreira, Optimal localization of firms in Hotelling networks,, in Modeling, 73 (2014), 567. doi: 10.1007/978-3-319-04849-9_2.

[21]

A. A. Pinto and T. Parreira, Complete versus incomplete information in the Hotelling model,, in Modeling, 73 (2014), 17. doi: 10.1007/978-3-319-04849-9_33.

[22]

A. A. Pinto and T. Parreira, Maximal differentiation in the Hotelling model with uncertainty,, in Modeling, 73 (2014), 585. doi: 10.1007/978-3-319-04849-9_34.

[23]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477. doi: 10.1080/02331934.2014.917304.

[24]

A. A. Pinto, Game theory and duopoly models,, in preparation., ().

[25]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141. doi: 10.2307/3003323.

[26]

A. Soetevent, Price Competition on Graphs,, Tinbergen Institute Discussion Papers 10-126/1, (2010), 10.

[27]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213. doi: 10.1016/0167-7187(94)00449-C.

show all references

References:
[1]

V. Aguirregabiria and G. Vicentini, Dynamic spatial competition between multi-store firms,, mimeo., (2015).

[2]

C. D'Aspermont, J. Gabszewicz and J. F. Thisse, On Hotelling's "Stability in competition'',, Econometrica, 47 (1979), 1145. doi: 10.2307/1911955.

[3]

F. Bloch and N. Quérou, Pricing in social networks,, Games Econom. Behav., 80 (2013), 243. doi: 10.1016/j.geb.2013.03.006.

[4]

Y. Bramoullé, R. Kranton and M. D'Amours, Strategic interaction and networks,, American Economic Review, 104 (2012), 898.

[5]

T. H. Colding and W. P. Minicozzi, Minimal Surfaces,, Courant Lecture Notes in Math, (1999).

[6]

Y. Chen and M. H. Riordan, Price and variety in the spokes model,, Economic Journal, 117 (2007), 897. doi: 10.1111/j.1468-0297.2007.02063.x.

[7]

G. Fournier and M. Scarsini, Hotelling's Games on Networks: Efficiency of Equilibria,, Centre d'Economie de la Sorbone, (2014).

[8]

A. Galeotti, S. Goyal and M. Jackson and F. Vega-Redondo and L. Yariv, Network games,, The Review of Economic Studies, 77 (2010), 218. doi: 10.1111/j.1467-937X.2009.00570.x.

[9]

A. Galeotti and F. Vega-Redondo, Complex networks and local externalities: A strategic approach,, International Journal of Economic Theory, 7 (2011), 77. doi: 10.1111/j.1742-7363.2010.00149.x.

[10]

S. Goyal, Connections: An introduction to the Economics of Networks,, Princeton University Press, (2007).

[11]

R. Gulliver, Removability of singular points on surfaces of bounded mean curvature,, The Journal of Differential Geometry, 11 (1976), 345.

[12]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11. doi: 10.2307/2098001.

[13]

H. Hotelling, Stability in competition,, The Economic Journal, 39 (1929), 41.

[14]

M. Jorge and W. Maldonado, Price Differentiation and Menu Costs in Credit Card Payments,, ANU Working Papers in Economics and Econometrics 2012-592, (2012), 2012.

[15]

V. Mazalov and M. Sakaguchi, Location game on the plane,, International Game Theory Review, 5 (2003), 13. doi: 10.1142/S0219198903000854.

[16]

T. Miller, R. L. Tobin and T. L. Friesz, Network facility-location models in stackelberg-nash-cournot spatial competition,, Papers in Regional Science, 71 (1992), 277.

[17]

M. J. Osborne and C. Pitchick, Equilibrium in hotelling's model of spatial competition,, Econometrica, 55 (1987), 911. doi: 10.2307/1911035.

[18]

D. Palvogyi, Hotelling on graphs,, mimeo, (2011).

[19]

A. A. Pinto and T. Parreira, A hotelling-type network,, in Dynamics, 1 (2011), 709. doi: 10.1007/978-3-642-11456-4_45.

[20]

A. A. Pinto and T. Parreira, Optimal localization of firms in Hotelling networks,, in Modeling, 73 (2014), 567. doi: 10.1007/978-3-319-04849-9_2.

[21]

A. A. Pinto and T. Parreira, Complete versus incomplete information in the Hotelling model,, in Modeling, 73 (2014), 17. doi: 10.1007/978-3-319-04849-9_33.

[22]

A. A. Pinto and T. Parreira, Maximal differentiation in the Hotelling model with uncertainty,, in Modeling, 73 (2014), 585. doi: 10.1007/978-3-319-04849-9_34.

[23]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477. doi: 10.1080/02331934.2014.917304.

[24]

A. A. Pinto, Game theory and duopoly models,, in preparation., ().

[25]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141. doi: 10.2307/3003323.

[26]

A. Soetevent, Price Competition on Graphs,, Tinbergen Institute Discussion Papers 10-126/1, (2010), 10.

[27]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213. doi: 10.1016/0167-7187(94)00449-C.

[1]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[2]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[3]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[4]

Alberto A. Pinto, Telmo Parreira. Localization and prices in the quadratic Hotelling model with uncertainty. Journal of Dynamics & Games, 2016, 3 (2) : 121-142. doi: 10.3934/jdg.2016006

[5]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[6]

Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial & Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931

[7]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

[8]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[9]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[10]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[11]

Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks & Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441

[12]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[13]

Hans-Otto Walther. Convergence to square waves for a price model with delay. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1325-1342. doi: 10.3934/dcds.2005.13.1325

[14]

Ábel Garab, Veronika Kovács, Tibor Krisztin. Global stability of a price model with multiple delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6855-6871. doi: 10.3934/dcds.2016098

[15]

Carlo Brugna, Giuseppe Toscani. Boltzmann-type models for price formation in the presence of behavioral aspects. Networks & Heterogeneous Media, 2015, 10 (3) : 543-557. doi: 10.3934/nhm.2015.10.543

[16]

Dong-Mei Zhu, Wai-Ki Ching, Robert J. Elliott, Tak-Kuen Siu, Lianmin Zhang. Hidden Markov models with threshold effects and their applications to oil price forecasting. Journal of Industrial & Management Optimization, 2017, 13 (2) : 757-773. doi: 10.3934/jimo.2016045

[17]

Filomena Garcia, Joana Resende. Conformity-based behavior and the dynamics of price competition: A new rationale for fashion shifts. Journal of Dynamics & Games, 2016, 3 (2) : 153-167. doi: 10.3934/jdg.2016008

[18]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[19]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

[20]

Lih-Ing W. Roeger. Discrete May-Leonard competition models II. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 841-860. doi: 10.3934/dcdsb.2005.5.841

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

[Back to Top]