-
Previous Article
Neumann homogenization via integro-differential operators
- DCDS Home
- This Issue
-
Next Article
On blow-up criterion for the nonlinear Schrödinger equation
Spectral properties of renormalization for area-preserving maps
1. | Department of Mathematics, Uppsala University, Uppsala, Sweden |
2. | Fraunhofer-Chalmers Research Centre for Industrial Mathematics, SE-412 88 Gothenburg, Sweden |
  Furthermore, it has been shown by Gaidashev, Johnson and Martens that infinitely renormalizable maps in a neighborhood of this fixed point admit invariant Cantor sets with vanishing Lyapunov exponents on which dynamics for any two maps is smoothly conjugate.
  This rigidity is a consequence of an interplay between the decay of geometry and the convergence rate of renormalization towards the fixed point.
  In this paper we prove a result which is crucial for a demonstration of rigidity: that an upper bound on this convergence rate of renormalizations of infinitely renormalizable maps is sufficiently small.
References:
[1] |
J. J. Abad and H. Koch, Renormalization and periodic orbits for Hamiltonian flows, Comm. Math. Phys., 212 (2000), 371-394.
doi: 10.1007/s002200000218. |
[2] |
J. J. Abad, H. Koch and P. Wittwer, A renormalization group for Hamiltonians: Numerical results}, Nonlinearity, 11 (1998), 1185-1194.
doi: 10.1088/0951-7715/11/5/001. |
[3] |
G. Benettin et al, Universal properties in conservative dynamical systems, Lettere al Nuovo Cimento, 28 (1980), 1-4. |
[4] |
T. Bountis, Period doubling bifurcations and universality in conservative Systems, Physica, 3 (1981), 577-589.
doi: 10.1016/0167-2789(81)90041-5. |
[5] |
A. de Carvalho, M. Lyubich and M. Martens, Renormalization in the Hénon family, I: Universality but non-rigidity, J. Stat. Phys, 121 (2005), 611-669.
doi: 10.1007/s10955-005-8668-4. |
[6] |
P. Collet, J.-P. Eckmann and H. Koch, Period doubling bifurcations for families of maps on $\mathbb{R}^{N}$, J. Stat. Phys., 3D (1980). |
[7] |
P. Collet, J.-P. Eckmann and H. Koch, On universality for area-preserving maps of the plane, Physica D, 3 (1981), 457-467.
doi: 10.1016/0167-2789(81)90033-6. |
[8] |
B. Derrida and Y. Pomeau, Feigenbaum's ratios of two dimensional area preserving maps, Phys. Lett. A, 80 (1980), 217-219.
doi: 10.1016/0375-9601(80)90003-1. |
[9] |
J.-P. Eckmann, H. Koch and P. Wittwer, Existence of a fixed point of the doubling transformation for area-preserving maps of the plane, Phys. Rev. A, 26 (1982), 720-722.
doi: 10.1103/PhysRevA.26.720. |
[10] |
J.-P. Eckmann, H. Koch and P. Wittwer, A computer-assisted proof of universality for area-preserving maps, Memoirs of the American Mathematical Society, 47 (1984), vi+122 pp.
doi: 10.1090/memo/0289. |
[11] |
H. Epstein, New proofs of the existence of the Feigenbaum functions, Commun. Math. Phys., 106 (1986), 395-426.
doi: 10.1007/BF01207254. |
[12] |
D. Gaidashev, Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori, Discrete Contin. Dyn. Syst., 13 (2005), 63-102.
doi: 10.3934/dcds.2005.13.63. |
[13] |
D. Gaidashev, Period doubling renormalization for area-preserving maps and mild computer assistance in contraction mapping principle, Int. Journal of Bifurcations and Chaos, 21 (2011), 3217-3230.
doi: 10.1142/S0218127411030477. |
[14] |
D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Hyperbolic sets, Nonlinearity, 22 (2009), 2487-2520.
doi: 10.1088/0951-7715/22/10/010. |
[15] |
D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Stable sets, J. Mod. Dyn., 3 (2009), 555-587.
doi: 10.3934/jmd.2009.3.555. |
[16] |
D. Gaidashev, T. Johnson and M. Martens, Rigidity for infinitely renormalizable area-preserving maps, Duke Mathematical Journal, 165 (2016), 129-159.
doi: 10.1215/00127094-3165327. |
[17] |
D. Gaidashev and H. Koch, Renormalization and shearless invariant tori: Numerical results, Nonlinearity, 17 (2004), 1713-1722.
doi: 10.1088/0951-7715/17/5/008. |
[18] |
D. Gaidashev and H. Koch, Period doubling in area-preserving maps: An associated one-dimensional problem, Ergod. Th. & Dyn. Sys., 31 (2011), 1193-1228.
doi: 10.1017/S0143385710000283. |
[19] |
P. Hazard, Hénon-like maps with arbitrary stationary combinatorics, Ergod. Th. & Dynam. Sys., 31 (2011), 1391-1443.
doi: 10.1017/S0143385710000398. |
[20] |
P. E. Hazard, M. Lyubich and M. Martens, Renormalisable Henon-like maps and unbounded geometry, Nonlinearity, 25 (2012), 397-420.
doi: 10.1088/0951-7715/25/2/397. |
[21] |
R. H. G. Helleman, Self-generated chaotic behavior in nonlinear mechanics, in Fundamental Problems in Statistical Mechanics (ed. E. G. D. Cohen), North-Holland, Amsterdam, 1980, 165-233. |
[22] |
T. Johnson, No elliptic islands for the universal area-preserving map, Nonlinearity, 24 (2011), 2063-2078.
doi: 10.1088/0951-7715/24/7/008. |
[23] |
K. Khanin, J. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Comm. Math. Phys., 270 (2007), 197-231.
doi: 10.1007/s00220-006-0125-y. |
[24] |
H. Koch, On the renormalization of Hamiltonian flows, and critical invariant tori, Discrete Contin. Dyn. Syst., 8 (2002), 633-646.
doi: 10.3934/dcds.2002.8.633. |
[25] |
H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori, Discrete Contin. Dyn. Syst., 11 (2004), 881-909.
doi: 10.3934/dcds.2004.11.881. |
[26] |
H. Koch, Existence of critical invariant tori, Ergod. Th. & Dynam. Sys., 28 (2008), 1879-1894.
doi: 10.1017/S0143385708000199. |
[27] |
S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 2513-2544.
doi: 10.1088/0951-7715/18/6/006. |
[28] |
M. Lyubich and M. Martens, Renormalization in the Hénon family, II: Homoclinic tangle, Invent. Math., 186 (2011), 115-189.
doi: 10.1007/s00222-011-0316-9. |
[29] |
M. Lyubich and M. Martens, Probabilistic universality in two-dimensional dynamics, e-print arXiv:1106.5067, (2011). |
[30] |
Y. W. Nam, Renormalization for three-dimensional Hénon-like maps, e-print arXiv:1408.4289, (2014). |
[31] |
, Programs available at http://www2.math.uu.se/~gaidash |
show all references
References:
[1] |
J. J. Abad and H. Koch, Renormalization and periodic orbits for Hamiltonian flows, Comm. Math. Phys., 212 (2000), 371-394.
doi: 10.1007/s002200000218. |
[2] |
J. J. Abad, H. Koch and P. Wittwer, A renormalization group for Hamiltonians: Numerical results}, Nonlinearity, 11 (1998), 1185-1194.
doi: 10.1088/0951-7715/11/5/001. |
[3] |
G. Benettin et al, Universal properties in conservative dynamical systems, Lettere al Nuovo Cimento, 28 (1980), 1-4. |
[4] |
T. Bountis, Period doubling bifurcations and universality in conservative Systems, Physica, 3 (1981), 577-589.
doi: 10.1016/0167-2789(81)90041-5. |
[5] |
A. de Carvalho, M. Lyubich and M. Martens, Renormalization in the Hénon family, I: Universality but non-rigidity, J. Stat. Phys, 121 (2005), 611-669.
doi: 10.1007/s10955-005-8668-4. |
[6] |
P. Collet, J.-P. Eckmann and H. Koch, Period doubling bifurcations for families of maps on $\mathbb{R}^{N}$, J. Stat. Phys., 3D (1980). |
[7] |
P. Collet, J.-P. Eckmann and H. Koch, On universality for area-preserving maps of the plane, Physica D, 3 (1981), 457-467.
doi: 10.1016/0167-2789(81)90033-6. |
[8] |
B. Derrida and Y. Pomeau, Feigenbaum's ratios of two dimensional area preserving maps, Phys. Lett. A, 80 (1980), 217-219.
doi: 10.1016/0375-9601(80)90003-1. |
[9] |
J.-P. Eckmann, H. Koch and P. Wittwer, Existence of a fixed point of the doubling transformation for area-preserving maps of the plane, Phys. Rev. A, 26 (1982), 720-722.
doi: 10.1103/PhysRevA.26.720. |
[10] |
J.-P. Eckmann, H. Koch and P. Wittwer, A computer-assisted proof of universality for area-preserving maps, Memoirs of the American Mathematical Society, 47 (1984), vi+122 pp.
doi: 10.1090/memo/0289. |
[11] |
H. Epstein, New proofs of the existence of the Feigenbaum functions, Commun. Math. Phys., 106 (1986), 395-426.
doi: 10.1007/BF01207254. |
[12] |
D. Gaidashev, Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori, Discrete Contin. Dyn. Syst., 13 (2005), 63-102.
doi: 10.3934/dcds.2005.13.63. |
[13] |
D. Gaidashev, Period doubling renormalization for area-preserving maps and mild computer assistance in contraction mapping principle, Int. Journal of Bifurcations and Chaos, 21 (2011), 3217-3230.
doi: 10.1142/S0218127411030477. |
[14] |
D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Hyperbolic sets, Nonlinearity, 22 (2009), 2487-2520.
doi: 10.1088/0951-7715/22/10/010. |
[15] |
D. Gaidashev and T. Johnson, Dynamics of the universal area-preserving map associated with period doubling: Stable sets, J. Mod. Dyn., 3 (2009), 555-587.
doi: 10.3934/jmd.2009.3.555. |
[16] |
D. Gaidashev, T. Johnson and M. Martens, Rigidity for infinitely renormalizable area-preserving maps, Duke Mathematical Journal, 165 (2016), 129-159.
doi: 10.1215/00127094-3165327. |
[17] |
D. Gaidashev and H. Koch, Renormalization and shearless invariant tori: Numerical results, Nonlinearity, 17 (2004), 1713-1722.
doi: 10.1088/0951-7715/17/5/008. |
[18] |
D. Gaidashev and H. Koch, Period doubling in area-preserving maps: An associated one-dimensional problem, Ergod. Th. & Dyn. Sys., 31 (2011), 1193-1228.
doi: 10.1017/S0143385710000283. |
[19] |
P. Hazard, Hénon-like maps with arbitrary stationary combinatorics, Ergod. Th. & Dynam. Sys., 31 (2011), 1391-1443.
doi: 10.1017/S0143385710000398. |
[20] |
P. E. Hazard, M. Lyubich and M. Martens, Renormalisable Henon-like maps and unbounded geometry, Nonlinearity, 25 (2012), 397-420.
doi: 10.1088/0951-7715/25/2/397. |
[21] |
R. H. G. Helleman, Self-generated chaotic behavior in nonlinear mechanics, in Fundamental Problems in Statistical Mechanics (ed. E. G. D. Cohen), North-Holland, Amsterdam, 1980, 165-233. |
[22] |
T. Johnson, No elliptic islands for the universal area-preserving map, Nonlinearity, 24 (2011), 2063-2078.
doi: 10.1088/0951-7715/24/7/008. |
[23] |
K. Khanin, J. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Comm. Math. Phys., 270 (2007), 197-231.
doi: 10.1007/s00220-006-0125-y. |
[24] |
H. Koch, On the renormalization of Hamiltonian flows, and critical invariant tori, Discrete Contin. Dyn. Syst., 8 (2002), 633-646.
doi: 10.3934/dcds.2002.8.633. |
[25] |
H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori, Discrete Contin. Dyn. Syst., 11 (2004), 881-909.
doi: 10.3934/dcds.2004.11.881. |
[26] |
H. Koch, Existence of critical invariant tori, Ergod. Th. & Dynam. Sys., 28 (2008), 1879-1894.
doi: 10.1017/S0143385708000199. |
[27] |
S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 2513-2544.
doi: 10.1088/0951-7715/18/6/006. |
[28] |
M. Lyubich and M. Martens, Renormalization in the Hénon family, II: Homoclinic tangle, Invent. Math., 186 (2011), 115-189.
doi: 10.1007/s00222-011-0316-9. |
[29] |
M. Lyubich and M. Martens, Probabilistic universality in two-dimensional dynamics, e-print arXiv:1106.5067, (2011). |
[30] |
Y. W. Nam, Renormalization for three-dimensional Hénon-like maps, e-print arXiv:1408.4289, (2014). |
[31] |
, Programs available at http://www2.math.uu.se/~gaidash |
[1] |
Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555 |
[2] |
Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106 |
[3] |
Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007 |
[4] |
Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231 |
[5] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[6] |
Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97 |
[7] |
Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507 |
[8] |
Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95 |
[9] |
Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979 |
[10] |
Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 |
[11] |
Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148 |
[12] |
Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200 |
[13] |
Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095 |
[14] |
Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499 |
[15] |
A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721 |
[16] |
H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361 |
[17] |
Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125 |
[18] |
Jianlu Zhang. Coexistence of period 2 and 3 caustics for deformative nearly circular billiard maps. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6419-6440. doi: 10.3934/dcds.2019278 |
[19] |
Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053 |
[20] |
Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]