2016, 36(8): 4531-4552. doi: 10.3934/dcds.2016.36.4531

Paradoxical waves and active mechanism in the cochlea

1. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States, United States

Received  May 2015 Revised  January 2016 Published  March 2016

This paper is dedicated to Peter Lax. We recall happily Lax's interest in the cochlea (and in all things biomedical), culminating in his magical solution of one version of the cochlea problem, as detailed herein. The cochlea is a remarkable organ (more remarkable the more we learn about it) that separates sounds into their frequency components. Two features of the cochlea are the focus of this work. One is the extreme insensitivity of the wave motion that occurs in the cochlea to the manner in which the cochlea is stimulated, so much so that even the direction of wave propagation is independent of the location of the source of the incident sound. The other is that the cochlea is an active system, a distributed amplifier that pumps energy into the cochlear wave as it propagates. Remarkably, this amplification not only boosts the signal but also improves the frequency resolution of the cochlea. The active mechanism is modeled here by a negative damping term in the equations of motion, and the whole system is stable as a result of fluid viscosity despite the negative damping.
Citation: Mohammad T. Manzari, Charles S. Peskin. Paradoxical waves and active mechanism in the cochlea. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4531-4552. doi: 10.3934/dcds.2016.36.4531
References:
[1]

R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145.

[2]

P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575.

[3]

E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377. doi: 10.1016/S0021-9991(03)00319-X.

[4]

A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600. doi: 10.1038/nrn3786.

[5]

E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).

[6]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107. doi: 10.1121/1.391735.

[7]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450. doi: 10.1137/0145026.

[8]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191. doi: 10.1137/0148009.

[9]

C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252.

[10]

C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38.

[11]

C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479. doi: 10.1017/S0962492902000077.

[12]

J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).

[13]

G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960).

show all references

References:
[1]

R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145.

[2]

P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575.

[3]

E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377. doi: 10.1016/S0021-9991(03)00319-X.

[4]

A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600. doi: 10.1038/nrn3786.

[5]

E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).

[6]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107. doi: 10.1121/1.391735.

[7]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450. doi: 10.1137/0145026.

[8]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191. doi: 10.1137/0148009.

[9]

C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252.

[10]

C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38.

[11]

C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479. doi: 10.1017/S0962492902000077.

[12]

J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).

[13]

G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960).

[1]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[2]

Harvey A. R. Williams, Lisa J. Fauci, Donald P. Gaver III. Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 519-540. doi: 10.3934/dcdsb.2009.11.519

[3]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[4]

Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluids-structure interaction in sperm motility. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 343-355. doi: 10.3934/dcdsb.2011.15.343

[5]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[6]

Giovanni Alessandrini, Elio Cabib. Determining the anisotropic traction state in a membrane by boundary measurements. Inverse Problems & Imaging, 2007, 1 (3) : 437-442. doi: 10.3934/ipi.2007.1.437

[7]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[8]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[9]

Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1

[10]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[11]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[12]

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838

[13]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[14]

Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661

[15]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[16]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[17]

Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583

[18]

Hayden Schaeffer. Active arcs and contours. Inverse Problems & Imaging, 2014, 8 (3) : 845-863. doi: 10.3934/ipi.2014.8.845

[19]

David Aleja, Julián López-Gómez. Some paradoxical effects of the advection on a class of diffusive equations in Ecology. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3031-3056. doi: 10.3934/dcdsb.2014.19.3031

[20]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]