2016, 11(2): 239-250. doi: 10.3934/nhm.2016.11.239

Morrey spaces norms and criteria for blowup in chemotaxis models

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50--384 Wrocław

2. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received  April 2015 Revised  July 2015 Published  March 2016

Two-dimensional Keller--Segel models for the chemotaxis with fractional (anomalous) diffusion are considered. Criteria for blowup of solutions in terms of suitable Morrey spaces norms are derived. Similarly, a criterion for blowup of solutions in terms of the radial initial concentrations, related to suitable Morrey spaces norms, is shown for radially symmetric solutions of chemotaxis in several dimensions. Those conditions are, in a sense, complementary to the ones guaranteeing the global-in-time existence of solutions.
Citation: Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz. Morrey spaces norms and criteria for blowup in chemotaxis models. Networks & Heterogeneous Media, 2016, 11 (2) : 239-250. doi: 10.3934/nhm.2016.11.239
References:
[1]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.

[2]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Coll. Math., 68 (1995), 229.

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.

[4]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model,, J. Evol. Equ., 10 (2010), 247. doi: 10.1007/s00028-009-0048-0.

[5]

P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup of solutions in two-dimensional chemotaxis models,, , ().

[6]

P. Biler, G. Karch and J. Zienkiewicz, Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems,, Nonlinearity, 28 (2015), 4369. doi: 10.1088/0951-7715/28/12/4369.

[7]

P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion,, Math. Methods Appl. Sci., 32 (2009), 112. doi: 10.1002/mma.1036.

[8]

P. Biler and J. Zienkiewicz, Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data,, Bull. Pol. Acad. Sci., 63 (2015), 41. doi: 10.4064/ba63-1-6.

[9]

G. Karch and K. Suzuki, Blow-up versus global existence of solutions to aggregation equations,, Appl. Math. (Warsaw), 38 (2011), 243. doi: 10.4064/am38-3-1.

[10]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differ. Integral Equ., 16 (2003), 427.

[11]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Equ., 18 (2013), 1189.

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042.

show all references

References:
[1]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.

[2]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Coll. Math., 68 (1995), 229.

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.

[4]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model,, J. Evol. Equ., 10 (2010), 247. doi: 10.1007/s00028-009-0048-0.

[5]

P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup of solutions in two-dimensional chemotaxis models,, , ().

[6]

P. Biler, G. Karch and J. Zienkiewicz, Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems,, Nonlinearity, 28 (2015), 4369. doi: 10.1088/0951-7715/28/12/4369.

[7]

P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion,, Math. Methods Appl. Sci., 32 (2009), 112. doi: 10.1002/mma.1036.

[8]

P. Biler and J. Zienkiewicz, Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data,, Bull. Pol. Acad. Sci., 63 (2015), 41. doi: 10.4064/ba63-1-6.

[9]

G. Karch and K. Suzuki, Blow-up versus global existence of solutions to aggregation equations,, Appl. Math. (Warsaw), 38 (2011), 243. doi: 10.4064/am38-3-1.

[10]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differ. Integral Equ., 16 (2003), 427.

[11]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Equ., 18 (2013), 1189.

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042.

[1]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[2]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[3]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019029

[4]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[5]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[6]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018295

[7]

Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111

[8]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[9]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[10]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[11]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[12]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 321-328. doi: 10.3934/dcdss.2020018

[13]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[14]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[15]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[16]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[17]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[18]

Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9

[19]

Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 139-164. doi: 10.3934/dcdss.2020008

[20]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]