April  2016, 9(2): 475-500. doi: 10.3934/dcdss.2016008

On the space separated representation when addressing the solution of PDE in complex domains

1. 

Notre Dame University-Louaize, Zouk Mosbeh P.O. Box 72, Lebanon

2. 

GeM Institute, UMR CNRS - Ecole Centrale de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France, France

3. 

LHEEA, UMR CNRS - Ecole Centrale de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France

4. 

High Performance Computing Institute - Ecole Centrale de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France

5. 

P' Institute, UPR CNRS - University of Poitiers & ENSMA, 11 Boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope Chasseneuil cedex, France

Received  September 2014 Revised  October 2015 Published  March 2016

Separated representations allow impressive computational CPU time savings when applied in different fields of computational mechanics. They have been extensively used for solving models defined in multidimensional spaces coming from (i) its proper physics, (ii) model parameters that were introduced as extra-coordinates and (iii) 3D models when the solution can be separated as a finite sum of functional products involving lower dimensional spaces. The last route is especially suitable when models are defined in hexahedral domains. When it is not the case, different possibilities exist and were considered in our former works. In the present work, we are analyzing two alternative routes. The first one consists of immersing the real non-separable domain into a fully separable hexahedral domain. The second procedure consists in applying a geometrical transformation able to transform the real domain into a hexahedra in which the model is solved by using a fully separated representation of the unknown field.
Citation: Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008
References:
[1]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids,, Journal of Non-Newtonian Fluid Mechanics, 139 (2006), 153.  doi: 10.1016/j.jnnfm.2006.07.007.  Google Scholar

[2]

A. Ammar, D. Ryckelynck, F. Chinesta and R. Keunings, On the reduction of kinetic theory models related to finitely extensible dumbbells,, Journal of Non-Newtonian Fluid Mechanics, 134 (2006), 136.  doi: 10.1016/j.jnnfm.2006.01.007.  Google Scholar

[3]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation,, Journal of Non-Newtonian Fluid Mechanics, 144 (2007), 98.   Google Scholar

[4]

A. Ammar, F. Chinesta and P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited: An introduction to the challenges of fully deterministic numerical descriptions,, International Journal for Multiscale Computational Engineering, 6/3 (2008), 191.  doi: 10.1615/IntJMultCompEng.v6.i3.20.  Google Scholar

[5]

A. Ammar, M. Normandin and F. Chinesta, Solving parametric complex fluids models in rheometric flows,, Journal of Non-Newtonian Fluid Mechanics, 165 (2010), 1588.  doi: 10.1016/j.jnnfm.2010.08.006.  Google Scholar

[6]

A. Ammar, E. Cueto and F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 960.  doi: 10.1002/cnm.2476.  Google Scholar

[7]

A. Ammar, A. Huerta, F. Chinesta, E. Cueto and A. Leygue, Parametric solutions involving geometry: A step towards efficient shape optimization,, Computer Methods in Applied Mechanics and Engineering, 268 (2014), 178.  doi: 10.1016/j.cma.2013.09.003.  Google Scholar

[8]

N. Bellomo, Modeling Complex Living Systems,, Birkhauser, (2008).   Google Scholar

[9]

R. A. Bialecki, A. J. Kassab and A. Fic, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis,, Int. J. Numer. Meth. Engrg., 62 (2005), 774.   Google Scholar

[10]

B. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, in: Kinetic Theory, Vol 2,, John Wiley & Sons, (1987).   Google Scholar

[11]

B. Bognet, A. Leygue, F. Chinesta, A. Poitou and F. Bordeu, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity,, Computer Methods in Applied Mechanics and Engineering, 201 (2012), 1.  doi: 10.1016/j.cma.2011.08.025.  Google Scholar

[12]

B. Bognet, A. Leygue and F. Chinesta, Separated representations of 3D elastic solutions in shell geometries,, Advanced Modelling and Simulation in Engineering Sciences, 1 (2014).  doi: 10.1186/2213-7467-1-4.  Google Scholar

[13]

A. Bruno-Alfonso, L. Cabezas-Gomez and H. Aparecido-Navarro, Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes,, World Journal of Modelling and Simulation, 8 (2012), 163.   Google Scholar

[14]

J. Burkardt, M. Gunzburger and H.-Ch. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows,, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337.  doi: 10.1016/j.cma.2006.04.004.  Google Scholar

[15]

E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: A primer, in Handbook of Numerical Analysis, Vol X,, Elsevier, (2003).   Google Scholar

[16]

F. Chinesta, A. Ammar, A. Leygue and R. Keunings, An overview of the Proper Generalized Decomposition with applications in computational rheology,, Journal of Non Newtonian Fluid Mechanics, 166 (2011), 578.  doi: 10.1016/j.jnnfm.2010.12.012.  Google Scholar

[17]

F. Chinesta, P. Ladeveze and E. Cueto, A short review in model order reduction based on Proper Generalized Decomposition,, Archives of Computational Methods in Engineering, 18 (2011), 395.  doi: 10.1007/s11831-011-9064-7.  Google Scholar

[18]

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta, Parametric PGD based computational vademecum for efficient design, optimization and control,, Archives of Computational Methods in Engineering, 20 (2013), 31.  doi: 10.1007/s11831-013-9080-x.  Google Scholar

[19]

F. Chinesta, A. Leygue, B. Bognet, Ch. Ghnatios, F. Poulhaon, F. Bordeu, A. Barasinski, A. Poitou, S. Chatel and S. Maison-Le-Poec, First steps towards an advanced simulation of composites manufacturing by automated tape placement,, International Journal of Material Forming, 7 (2014), 81.  doi: 10.1007/s12289-012-1112-9.  Google Scholar

[20]

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for advanced numerical simulations. A primer,, Springerbriefs, (2014).  doi: 10.1007/978-3-319-02865-1.  Google Scholar

[21]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization,, Inverse Problems, 17 (2001), 553.  doi: 10.1088/0266-5611/17/3/313.  Google Scholar

[22]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, An inversion method for harmonic functions reconstruction,, International Journal of Thermal Sciences, 41 (2002), 509.  doi: 10.1016/S1290-0729(02)01344-3.  Google Scholar

[23]

Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, P. Breitkopf and P. Villon, Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion,, Composites Part A, 42 (2011), 1169.  doi: 10.1016/j.compositesa.2011.05.001.  Google Scholar

[24]

Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven control of thermal processes,, Computer Methods in Applied Mechanics and Engineering, 213 (2012), 29.  doi: 10.1016/j.cma.2011.11.018.  Google Scholar

[25]

Ch. Ghnatios, F. Chinesta et Ch. Binetruy, The squeeze flow of composite laminates,, International Journal of Material Forming, ().   Google Scholar

[26]

D. Gonzalez, A. Ammar, F. Chinesta and E. Cueto, Recent advances on the use of separated representations,, International Journal for Numerical Methods in Engineering, 81 (2010), 637.  doi: 10.1002/nme.2710.  Google Scholar

[27]

D. Gonzalez, F. Masson, F. Poulhaon, A. Leygue, E. Cueto and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven inverse identification,, Mathematics and Computers in Simulation, 82 (2012), 1677.  doi: 10.1016/j.matcom.2012.04.001.  Google Scholar

[28]

M. D. Gunzburger, J. S. Peterson and J. N. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1030.  doi: 10.1016/j.cma.2006.08.004.  Google Scholar

[29]

P. Ladeveze, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables,, Comptes Rendus Académie des Sciences Paris, 309 (1989), 1095.   Google Scholar

[30]

P. Ladevèze, J.-C. Passieux and D. Néron, The latin multiscale computational method and the proper generalized decomposition,, Computer Methods In Applied Mechanics and Engineering, 199 (2010), 1287.  doi: 10.1016/j.cma.2009.06.023.  Google Scholar

[31]

H. Lamari, A. Ammar, A. Leygue and F. Chinesta, On the solution of the multidimensional Langer's equation by using the Proper Generalized Decomposition Method for modeling phase transitions,, Modelling and Simulation in Materials Science and Engineering, 20 (2012).  doi: 10.1088/0965-0393/20/1/015007.  Google Scholar

[32]

A. Leygue, F. Chinesta, M. Beringhier, T. L. Nguyen, J. C. Grandidier, F. Pasavento and B. Schrefler, Towards a framework for non-linear thermal models in shell domains,, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (2013), 55.  doi: 10.1108/09615531311289105.  Google Scholar

[33]

Y. Maday and E. M. Ronquist, A reduced-basis element method,, C. R. Acad. Sci. Paris, 335 (2002), 195.  doi: 10.1016/S1631-073X(02)02427-5.  Google Scholar

[34]

Y. Maday, A. T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations,, Journal of Scientific Computing, 17 (2002), 437.  doi: 10.1023/A:1015145924517.  Google Scholar

[35]

Y. Maday and E. M. Ronquist, The reduced basis element method: Application to a thermal fin problem,, SIAM J. Sci. Comput., 26 (2004), 240.  doi: 10.1137/S1064827502419932.  Google Scholar

[36]

S. Niroomandi, I. Alfaro, E. Cueto and F. Chinesta, Accounting for large deformations in real-time simulations of soft tissues based on reduced order models,, Computer Methods and Programs in Biomedicine, 105 (2012), 1.   Google Scholar

[37]

A. Nouy, Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems,, Archives of Computational Methods in Engineering - State of the Art Reviews, 17 (2010), 403.  doi: 10.1007/s11831-010-9054-1.  Google Scholar

[38]

H. M. Park and D. H. Cho, The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems,, Chem. Engineer. Science, 51 (1996), 81.   Google Scholar

[39]

E. Pruliere, F. Chinesta and A. Ammar, On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposition,, Mathematics and Computers in Simulation, 81 (2010), 791.  doi: 10.1016/j.matcom.2010.07.015.  Google Scholar

[40]

G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics,, Archives of Computational Methods in Engineering, 15 (2008), 229.  doi: 10.1007/s11831-008-9019-9.  Google Scholar

[41]

D. Ryckelynck, L. Hermanns, F. Chinesta and E. Alarcon, An efficient a priori model reduction for boundary element models,, Engineering Analysis with Boundary Elements, 29 (2005), 796.  doi: 10.1016/j.enganabound.2005.04.003.  Google Scholar

[42]

D. Ryckelynck, F. Chinesta, E. Cueto and A. Ammar, On the a priori model reduction: Overview and recent developments,, Archives of Computational Methods in Engineering, 13 (2006), 91.  doi: 10.1007/BF02905932.  Google Scholar

[43]

F. Schmidt, N. Pirc, M. Mongeau and F. Chinesta, Efficient mould cooling optimization by using model reduction,, International Journal of Material Forming, 4 (2011), 71.   Google Scholar

[44]

K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds,, Int. J. Numer. Meth. Fluids, 47 (2005), 773.  doi: 10.1002/fld.867.  Google Scholar

show all references

References:
[1]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids,, Journal of Non-Newtonian Fluid Mechanics, 139 (2006), 153.  doi: 10.1016/j.jnnfm.2006.07.007.  Google Scholar

[2]

A. Ammar, D. Ryckelynck, F. Chinesta and R. Keunings, On the reduction of kinetic theory models related to finitely extensible dumbbells,, Journal of Non-Newtonian Fluid Mechanics, 134 (2006), 136.  doi: 10.1016/j.jnnfm.2006.01.007.  Google Scholar

[3]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation,, Journal of Non-Newtonian Fluid Mechanics, 144 (2007), 98.   Google Scholar

[4]

A. Ammar, F. Chinesta and P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited: An introduction to the challenges of fully deterministic numerical descriptions,, International Journal for Multiscale Computational Engineering, 6/3 (2008), 191.  doi: 10.1615/IntJMultCompEng.v6.i3.20.  Google Scholar

[5]

A. Ammar, M. Normandin and F. Chinesta, Solving parametric complex fluids models in rheometric flows,, Journal of Non-Newtonian Fluid Mechanics, 165 (2010), 1588.  doi: 10.1016/j.jnnfm.2010.08.006.  Google Scholar

[6]

A. Ammar, E. Cueto and F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 960.  doi: 10.1002/cnm.2476.  Google Scholar

[7]

A. Ammar, A. Huerta, F. Chinesta, E. Cueto and A. Leygue, Parametric solutions involving geometry: A step towards efficient shape optimization,, Computer Methods in Applied Mechanics and Engineering, 268 (2014), 178.  doi: 10.1016/j.cma.2013.09.003.  Google Scholar

[8]

N. Bellomo, Modeling Complex Living Systems,, Birkhauser, (2008).   Google Scholar

[9]

R. A. Bialecki, A. J. Kassab and A. Fic, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis,, Int. J. Numer. Meth. Engrg., 62 (2005), 774.   Google Scholar

[10]

B. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, in: Kinetic Theory, Vol 2,, John Wiley & Sons, (1987).   Google Scholar

[11]

B. Bognet, A. Leygue, F. Chinesta, A. Poitou and F. Bordeu, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity,, Computer Methods in Applied Mechanics and Engineering, 201 (2012), 1.  doi: 10.1016/j.cma.2011.08.025.  Google Scholar

[12]

B. Bognet, A. Leygue and F. Chinesta, Separated representations of 3D elastic solutions in shell geometries,, Advanced Modelling and Simulation in Engineering Sciences, 1 (2014).  doi: 10.1186/2213-7467-1-4.  Google Scholar

[13]

A. Bruno-Alfonso, L. Cabezas-Gomez and H. Aparecido-Navarro, Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes,, World Journal of Modelling and Simulation, 8 (2012), 163.   Google Scholar

[14]

J. Burkardt, M. Gunzburger and H.-Ch. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows,, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337.  doi: 10.1016/j.cma.2006.04.004.  Google Scholar

[15]

E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: A primer, in Handbook of Numerical Analysis, Vol X,, Elsevier, (2003).   Google Scholar

[16]

F. Chinesta, A. Ammar, A. Leygue and R. Keunings, An overview of the Proper Generalized Decomposition with applications in computational rheology,, Journal of Non Newtonian Fluid Mechanics, 166 (2011), 578.  doi: 10.1016/j.jnnfm.2010.12.012.  Google Scholar

[17]

F. Chinesta, P. Ladeveze and E. Cueto, A short review in model order reduction based on Proper Generalized Decomposition,, Archives of Computational Methods in Engineering, 18 (2011), 395.  doi: 10.1007/s11831-011-9064-7.  Google Scholar

[18]

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta, Parametric PGD based computational vademecum for efficient design, optimization and control,, Archives of Computational Methods in Engineering, 20 (2013), 31.  doi: 10.1007/s11831-013-9080-x.  Google Scholar

[19]

F. Chinesta, A. Leygue, B. Bognet, Ch. Ghnatios, F. Poulhaon, F. Bordeu, A. Barasinski, A. Poitou, S. Chatel and S. Maison-Le-Poec, First steps towards an advanced simulation of composites manufacturing by automated tape placement,, International Journal of Material Forming, 7 (2014), 81.  doi: 10.1007/s12289-012-1112-9.  Google Scholar

[20]

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for advanced numerical simulations. A primer,, Springerbriefs, (2014).  doi: 10.1007/978-3-319-02865-1.  Google Scholar

[21]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization,, Inverse Problems, 17 (2001), 553.  doi: 10.1088/0266-5611/17/3/313.  Google Scholar

[22]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, An inversion method for harmonic functions reconstruction,, International Journal of Thermal Sciences, 41 (2002), 509.  doi: 10.1016/S1290-0729(02)01344-3.  Google Scholar

[23]

Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, P. Breitkopf and P. Villon, Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion,, Composites Part A, 42 (2011), 1169.  doi: 10.1016/j.compositesa.2011.05.001.  Google Scholar

[24]

Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven control of thermal processes,, Computer Methods in Applied Mechanics and Engineering, 213 (2012), 29.  doi: 10.1016/j.cma.2011.11.018.  Google Scholar

[25]

Ch. Ghnatios, F. Chinesta et Ch. Binetruy, The squeeze flow of composite laminates,, International Journal of Material Forming, ().   Google Scholar

[26]

D. Gonzalez, A. Ammar, F. Chinesta and E. Cueto, Recent advances on the use of separated representations,, International Journal for Numerical Methods in Engineering, 81 (2010), 637.  doi: 10.1002/nme.2710.  Google Scholar

[27]

D. Gonzalez, F. Masson, F. Poulhaon, A. Leygue, E. Cueto and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven inverse identification,, Mathematics and Computers in Simulation, 82 (2012), 1677.  doi: 10.1016/j.matcom.2012.04.001.  Google Scholar

[28]

M. D. Gunzburger, J. S. Peterson and J. N. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1030.  doi: 10.1016/j.cma.2006.08.004.  Google Scholar

[29]

P. Ladeveze, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables,, Comptes Rendus Académie des Sciences Paris, 309 (1989), 1095.   Google Scholar

[30]

P. Ladevèze, J.-C. Passieux and D. Néron, The latin multiscale computational method and the proper generalized decomposition,, Computer Methods In Applied Mechanics and Engineering, 199 (2010), 1287.  doi: 10.1016/j.cma.2009.06.023.  Google Scholar

[31]

H. Lamari, A. Ammar, A. Leygue and F. Chinesta, On the solution of the multidimensional Langer's equation by using the Proper Generalized Decomposition Method for modeling phase transitions,, Modelling and Simulation in Materials Science and Engineering, 20 (2012).  doi: 10.1088/0965-0393/20/1/015007.  Google Scholar

[32]

A. Leygue, F. Chinesta, M. Beringhier, T. L. Nguyen, J. C. Grandidier, F. Pasavento and B. Schrefler, Towards a framework for non-linear thermal models in shell domains,, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (2013), 55.  doi: 10.1108/09615531311289105.  Google Scholar

[33]

Y. Maday and E. M. Ronquist, A reduced-basis element method,, C. R. Acad. Sci. Paris, 335 (2002), 195.  doi: 10.1016/S1631-073X(02)02427-5.  Google Scholar

[34]

Y. Maday, A. T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations,, Journal of Scientific Computing, 17 (2002), 437.  doi: 10.1023/A:1015145924517.  Google Scholar

[35]

Y. Maday and E. M. Ronquist, The reduced basis element method: Application to a thermal fin problem,, SIAM J. Sci. Comput., 26 (2004), 240.  doi: 10.1137/S1064827502419932.  Google Scholar

[36]

S. Niroomandi, I. Alfaro, E. Cueto and F. Chinesta, Accounting for large deformations in real-time simulations of soft tissues based on reduced order models,, Computer Methods and Programs in Biomedicine, 105 (2012), 1.   Google Scholar

[37]

A. Nouy, Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems,, Archives of Computational Methods in Engineering - State of the Art Reviews, 17 (2010), 403.  doi: 10.1007/s11831-010-9054-1.  Google Scholar

[38]

H. M. Park and D. H. Cho, The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems,, Chem. Engineer. Science, 51 (1996), 81.   Google Scholar

[39]

E. Pruliere, F. Chinesta and A. Ammar, On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposition,, Mathematics and Computers in Simulation, 81 (2010), 791.  doi: 10.1016/j.matcom.2010.07.015.  Google Scholar

[40]

G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics,, Archives of Computational Methods in Engineering, 15 (2008), 229.  doi: 10.1007/s11831-008-9019-9.  Google Scholar

[41]

D. Ryckelynck, L. Hermanns, F. Chinesta and E. Alarcon, An efficient a priori model reduction for boundary element models,, Engineering Analysis with Boundary Elements, 29 (2005), 796.  doi: 10.1016/j.enganabound.2005.04.003.  Google Scholar

[42]

D. Ryckelynck, F. Chinesta, E. Cueto and A. Ammar, On the a priori model reduction: Overview and recent developments,, Archives of Computational Methods in Engineering, 13 (2006), 91.  doi: 10.1007/BF02905932.  Google Scholar

[43]

F. Schmidt, N. Pirc, M. Mongeau and F. Chinesta, Efficient mould cooling optimization by using model reduction,, International Journal of Material Forming, 4 (2011), 71.   Google Scholar

[44]

K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds,, Int. J. Numer. Meth. Fluids, 47 (2005), 773.  doi: 10.1002/fld.867.  Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[5]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[6]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[7]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[8]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[18]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[19]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[20]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (8)

[Back to Top]