2016, 36(9): 4619-4635. doi: 10.3934/dcds.2016001

Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology

1. 

GeoDynApp - ECSING Group, Spain

2. 

Institut de Recherche Mathématiques de Rennes, Université de Rennes 1, F-35042 Rennes, France

3. 

Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, J. Herrera y Reissig 565, C.P. 11300 Montevideo

4. 

Universidad Nacional Autónoma de México, Apartado Postal 273, Admon. de correos #3, C.P. 62251 Cuernavaca, Morelos

Received  June 2015 Revised  March 2016 Published  May 2016

We consider a minimal compact lamination by hyperbolic surfaces. We prove that if no leaf is simply connected, then the horocycle flow on its unitary tangent bundle is minimal.
Citation: Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001
References:
[1]

F. Alcalde Cuesta and F. Dal'Bo, Remarks on the dynamics of the horocycle flow for homogeneous foliations by hyperbolic surfaces,, Expo. Math., 33 (2015), 431. doi: 10.1016/j.exmath.2015.07.006.

[2]

S. Alvarez and P. Lessa, The Teichmüller space of the Hirsch foliation,, preprint, ().

[3]

Ch. Bonatti, X. Gómez-Mont and R. Vila-Freyer, Statistical behaviour of the leaves of Riccati foliations,, Ergodic Theory Dynam. Systems, 30 (2010), 67. doi: 10.1017/S0143385708001028.

[4]

A. Candel, Uniformization of surface laminations,, Ann. Sci. École Norm. Sup., 26 (1993), 489.

[5]

A. Candel and L. Conlon, Foliations. I,, Graduate Studies in Mathematics, (2000).

[6]

J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds,, J. Differential Geom., 17 (1982), 15.

[7]

F. Dal'bo, Topologie du feuilletage fortement stable,, Ann. Inst. Fourier (Grenoble), 50 (2000), 981. doi: 10.5802/aif.1781.

[8]

F. Dal'Bo, Geodesic and Horocyclic Trajectories,, Universitext. Translated from the 2007 French original, (2007). doi: 10.1007/978-0-85729-073-1.

[9]

D. B. A. Epstein, K. C. Millett and D. Tischler, Leaves without holonomy,, J. London Math. Soc. (2), 16 (1977), 548.

[10]

G. Hector, Feuilletages en cylindres,, in Geometry and topology (Proc. III Latin Amer. School of Math., (1977), 252.

[11]

G. Hector, S. Matsumoto and G. Meigniez, Ends of leaves of Lie foliations,, J. Math. Soc. Japan, 57 (2005), 753. doi: 10.2969/jmsj/1158241934.

[12]

G. A. Hedlund, Fuchsian groups and transitive horocycles,, Duke Math. J., 2 (1936), 530. doi: 10.1215/S0012-7094-36-00246-6.

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[14]

S. Hurder, Ergodic theory of foliations and a theorem of Sacksteder,, in Dynamical systems (College Park, 1342 (1988), 1986. doi: 10.1007/BFb0082838.

[15]

V. A. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups,, J. Dynam. Control Systems, 6 (2000), 21. doi: 10.1023/A:1009517621605.

[16]

M. Kulikov, The horocycle flow without minimal sets,, C. R. Math. Acad. Sci. Paris, 338 (2004), 477. doi: 10.1016/j.crma.2003.12.027.

[17]

M. Martínez, S. Matsumoto and A. Verjovsky, Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem,, to appear in Journal of Modern Dynamics, 10 (2016).

[18]

S. Matsumoto, Dynamical systems without minimal sets,, preprint, ().

[19]

S. Matsumoto, Horocycle flows without minimal sets,, preprint, ().

[20]

T. Roblin, Ergodicitéet équidistribution en courbure négative,, Mém. Soc. Math. Fr. (N.S.), 95 (2003).

[21]

A. Sambusetti, Asymptotic properties of coverings in negative curvature,, Geom. Topol., 12 (2008), 617. doi: 10.2140/gt.2008.12.617.

[22]

O. Sarig, The horocyclic flow and the Laplacian on hyperbolic surfaces of infinite genus,, Geom. Funct. Anal., 19 (2010), 1757. doi: 10.1007/s00039-010-0048-9.

[23]

A. N. Starkov, Fuchsian groups from the dynamical viewpoint,, J. Dynam. Control Systems, 1 (1995), 427. doi: 10.1007/BF02269378.

[24]

A. Verjovsky, A uniformization theorem for holomorphic foliations,, in The Lefschetz centennial conference, (1984), 233.

show all references

References:
[1]

F. Alcalde Cuesta and F. Dal'Bo, Remarks on the dynamics of the horocycle flow for homogeneous foliations by hyperbolic surfaces,, Expo. Math., 33 (2015), 431. doi: 10.1016/j.exmath.2015.07.006.

[2]

S. Alvarez and P. Lessa, The Teichmüller space of the Hirsch foliation,, preprint, ().

[3]

Ch. Bonatti, X. Gómez-Mont and R. Vila-Freyer, Statistical behaviour of the leaves of Riccati foliations,, Ergodic Theory Dynam. Systems, 30 (2010), 67. doi: 10.1017/S0143385708001028.

[4]

A. Candel, Uniformization of surface laminations,, Ann. Sci. École Norm. Sup., 26 (1993), 489.

[5]

A. Candel and L. Conlon, Foliations. I,, Graduate Studies in Mathematics, (2000).

[6]

J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds,, J. Differential Geom., 17 (1982), 15.

[7]

F. Dal'bo, Topologie du feuilletage fortement stable,, Ann. Inst. Fourier (Grenoble), 50 (2000), 981. doi: 10.5802/aif.1781.

[8]

F. Dal'Bo, Geodesic and Horocyclic Trajectories,, Universitext. Translated from the 2007 French original, (2007). doi: 10.1007/978-0-85729-073-1.

[9]

D. B. A. Epstein, K. C. Millett and D. Tischler, Leaves without holonomy,, J. London Math. Soc. (2), 16 (1977), 548.

[10]

G. Hector, Feuilletages en cylindres,, in Geometry and topology (Proc. III Latin Amer. School of Math., (1977), 252.

[11]

G. Hector, S. Matsumoto and G. Meigniez, Ends of leaves of Lie foliations,, J. Math. Soc. Japan, 57 (2005), 753. doi: 10.2969/jmsj/1158241934.

[12]

G. A. Hedlund, Fuchsian groups and transitive horocycles,, Duke Math. J., 2 (1936), 530. doi: 10.1215/S0012-7094-36-00246-6.

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[14]

S. Hurder, Ergodic theory of foliations and a theorem of Sacksteder,, in Dynamical systems (College Park, 1342 (1988), 1986. doi: 10.1007/BFb0082838.

[15]

V. A. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups,, J. Dynam. Control Systems, 6 (2000), 21. doi: 10.1023/A:1009517621605.

[16]

M. Kulikov, The horocycle flow without minimal sets,, C. R. Math. Acad. Sci. Paris, 338 (2004), 477. doi: 10.1016/j.crma.2003.12.027.

[17]

M. Martínez, S. Matsumoto and A. Verjovsky, Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem,, to appear in Journal of Modern Dynamics, 10 (2016).

[18]

S. Matsumoto, Dynamical systems without minimal sets,, preprint, ().

[19]

S. Matsumoto, Horocycle flows without minimal sets,, preprint, ().

[20]

T. Roblin, Ergodicitéet équidistribution en courbure négative,, Mém. Soc. Math. Fr. (N.S.), 95 (2003).

[21]

A. Sambusetti, Asymptotic properties of coverings in negative curvature,, Geom. Topol., 12 (2008), 617. doi: 10.2140/gt.2008.12.617.

[22]

O. Sarig, The horocyclic flow and the Laplacian on hyperbolic surfaces of infinite genus,, Geom. Funct. Anal., 19 (2010), 1757. doi: 10.1007/s00039-010-0048-9.

[23]

A. N. Starkov, Fuchsian groups from the dynamical viewpoint,, J. Dynam. Control Systems, 1 (1995), 427. doi: 10.1007/BF02269378.

[24]

A. Verjovsky, A uniformization theorem for holomorphic foliations,, in The Lefschetz centennial conference, (1984), 233.

[1]

Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113

[2]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Corrigendum to "Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology". Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4585-4586. doi: 10.3934/dcds.2017196

[3]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[4]

François Ledrappier, Omri Sarig. Fluctuations of ergodic sums for horocycle flows on $\Z^d$--covers of finite volume surfaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 247-325. doi: 10.3934/dcds.2008.22.247

[5]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[6]

Alfonso Artigue. Expansive flows of surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505

[7]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[8]

Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715

[9]

Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13

[10]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[11]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[12]

Luis Barreira, Christian Wolf. Dimension and ergodic decompositions for hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 201-212. doi: 10.3934/dcds.2007.17.201

[13]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[14]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[15]

Carlos Arnoldo Morales. A note on periodic orbits for singular-hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 615-619. doi: 10.3934/dcds.2004.11.615

[16]

Shucheng Yu. Logarithm laws for unipotent flows on hyperbolic manifolds. Journal of Modern Dynamics, 2017, 11: 447-476. doi: 10.3934/jmd.2017018

[17]

Giovanni Forni, Corinna Ulcigrai. Time-changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 251-273. doi: 10.3934/jmd.2012.6.251

[18]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[19]

Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54.

[20]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

[Back to Top]