2016, 36(9): 4703-4721. doi: 10.3934/dcds.2016004

Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems

1. 

Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna, Spain

2. 

Dpto. de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna

3. 

Departamento de Matemática, Universidad Técnico Fedrico Santa María, Casilla V-110, Avda. España, 1680 - Valparaíso, Chile

Received  May 2015 Revised  January 2016 Published  May 2016

In this paper we consider positive supersolutions of the elliptic equation $-\triangle u = f(u) |\nabla u|^q$, posed in exterior domains of $\mathbb{R}^N$ ($N\ge 2$), where $f$ is continuous in $[0,+\infty)$ and positive in $(0,+\infty)$ and $q>0$. We classify supersolutions $u$ into four types depending on the function $m(R)=\inf_{|x|=R} u(x)$ for large $R$, and give necessary and sufficient conditions in order to have supersolutions of each of these types. As a consequence, we also obtain Liouville theorems for supersolutions depending on the values of $N$, $q$ and on some integrability properties on $f$ at zero or infinity. We also describe these questions when the equation is posed in the whole $\mathbb{R}^N$.
Citation: M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004
References:
[1]

S. Alarcón, M. Burgos-Pérez, J. García Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms,, Differential Equations, 260 (2016), 758. doi: 10.1016/j.jde.2015.09.004.

[2]

S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems,, J. Math. Pures Appl., 99 (2013), 618. doi: 10.1016/j.matpur.2012.10.001.

[3]

S. Alarcón, J. García Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms,, Milan J. Math., 81 (2013), 171. doi: 10.1007/s00032-013-0197-z.

[4]

S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian,, Ann. Scuola Norm. Sup. Pisa., 16 (2016), 129. doi: 10.2422/2036-2145.201402\_007.

[5]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Part. Diff. Eqns., 36 (2011), 2011. doi: 10.1080/03605302.2010.534523.

[6]

S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 711.

[7]

C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains,, Arch. Rational Mech. Anal., 112 (1990), 319. doi: 10.1007/BF02384077.

[8]

C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595. doi: 10.1090/S0002-9947-1989-0937878-9.

[9]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.

[10]

M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293. doi: 10.1007/BF00251552.

[11]

M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1. doi: 10.1007/BF02788105.

[12]

I. Birindelli and F. Demengel, Some Liouville theorems for the $p$-Laplacian,, 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems. Electr. J. Diff. Eqns. Conf., 8 (2002), 35.

[13]

I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators,, Ann. Fac. Sci. Toulouse, 13 (2004), 261. doi: 10.5802/afst.1070.

[14]

L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213.

[15]

I. Capuzzo Dolcetta and A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities,, Commun. Contemp. Math., 5 (2003), 435. doi: 10.1142/S0219199703001014.

[16]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[17]

M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term,, SIAM J. Math. Anal., 20 (1989), 886. doi: 10.1137/0520060.

[18]

A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. H. Poincaré (C) An. Non Linéaire, 17 (2000), 219. doi: 10.1016/S0294-1449(00)00109-8.

[19]

P. Felmer and A.Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators,, Trans. Amer. Math. Soc., 361 (2009), 5721. doi: 10.1090/S0002-9947-09-04566-8.

[20]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Adv. Math., 226 (2011), 2712. doi: 10.1016/j.aim.2010.09.023.

[21]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903. doi: 10.1016/j.na.2008.12.018.

[22]

E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity,, Differential Equations, 41 (2005), 693. doi: 10.1007/s10625-005-0204-4.

[23]

E. I. Galakhov, Positive solutions of quasilinear elliptic equations,, Math. Notes, 78 (2005), 185. doi: 10.1007/s11006-005-0114-z.

[24]

B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations,, In Nonlinear partial differential equations in engineering and applied science, (1980), 255.

[25]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[26]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0.

[27]

O. González-Meléndez and A. Quaas, On critical exponents for Lane-Emden-Fowler type equations with a singular extremal operator,, Submitted for publication., ().

[28]

V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 25. doi: 10.1016/j.anihpc.2004.03.003.

[29]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains,, In Handbook of differential equations: Stationary partial differential equations, 6 (2008), 177. doi: 10.1016/S1874-5733(08)80020-4.

[30]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive supersolutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,, Trans. Amer. Math. Soc., 361 (2009), 697. doi: 10.1090/S0002-9947-08-04453-X.

[31]

O. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).

[32]

Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27. doi: 10.1007/BF02786551.

[33]

V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains,, Manuscripta Math., 115 (2004), 521. doi: 10.1007/s00229-004-0514-5.

[34]

J. Serrin and H. Zou, Existence and non-existence results for ground states of quasi-linear elliptic equations,, Arch. Rat. Mech. Anal., 121 (1992), 101. doi: 10.1007/BF00375415.

[35]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79. doi: 10.1007/BF02392645.

[36]

P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Elect. J. Diff. Eqns., 2001 (2001), 1.

[37]

F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler,, Acta Math. Univ. Comenianae, 65 (1996), 53.

show all references

References:
[1]

S. Alarcón, M. Burgos-Pérez, J. García Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms,, Differential Equations, 260 (2016), 758. doi: 10.1016/j.jde.2015.09.004.

[2]

S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems,, J. Math. Pures Appl., 99 (2013), 618. doi: 10.1016/j.matpur.2012.10.001.

[3]

S. Alarcón, J. García Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms,, Milan J. Math., 81 (2013), 171. doi: 10.1007/s00032-013-0197-z.

[4]

S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian,, Ann. Scuola Norm. Sup. Pisa., 16 (2016), 129. doi: 10.2422/2036-2145.201402\_007.

[5]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Part. Diff. Eqns., 36 (2011), 2011. doi: 10.1080/03605302.2010.534523.

[6]

S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 711.

[7]

C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains,, Arch. Rational Mech. Anal., 112 (1990), 319. doi: 10.1007/BF02384077.

[8]

C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595. doi: 10.1090/S0002-9947-1989-0937878-9.

[9]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.

[10]

M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293. doi: 10.1007/BF00251552.

[11]

M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1. doi: 10.1007/BF02788105.

[12]

I. Birindelli and F. Demengel, Some Liouville theorems for the $p$-Laplacian,, 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems. Electr. J. Diff. Eqns. Conf., 8 (2002), 35.

[13]

I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators,, Ann. Fac. Sci. Toulouse, 13 (2004), 261. doi: 10.5802/afst.1070.

[14]

L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213.

[15]

I. Capuzzo Dolcetta and A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities,, Commun. Contemp. Math., 5 (2003), 435. doi: 10.1142/S0219199703001014.

[16]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[17]

M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term,, SIAM J. Math. Anal., 20 (1989), 886. doi: 10.1137/0520060.

[18]

A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. H. Poincaré (C) An. Non Linéaire, 17 (2000), 219. doi: 10.1016/S0294-1449(00)00109-8.

[19]

P. Felmer and A.Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators,, Trans. Amer. Math. Soc., 361 (2009), 5721. doi: 10.1090/S0002-9947-09-04566-8.

[20]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Adv. Math., 226 (2011), 2712. doi: 10.1016/j.aim.2010.09.023.

[21]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903. doi: 10.1016/j.na.2008.12.018.

[22]

E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity,, Differential Equations, 41 (2005), 693. doi: 10.1007/s10625-005-0204-4.

[23]

E. I. Galakhov, Positive solutions of quasilinear elliptic equations,, Math. Notes, 78 (2005), 185. doi: 10.1007/s11006-005-0114-z.

[24]

B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations,, In Nonlinear partial differential equations in engineering and applied science, (1980), 255.

[25]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[26]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0.

[27]

O. González-Meléndez and A. Quaas, On critical exponents for Lane-Emden-Fowler type equations with a singular extremal operator,, Submitted for publication., ().

[28]

V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 25. doi: 10.1016/j.anihpc.2004.03.003.

[29]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains,, In Handbook of differential equations: Stationary partial differential equations, 6 (2008), 177. doi: 10.1016/S1874-5733(08)80020-4.

[30]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive supersolutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,, Trans. Amer. Math. Soc., 361 (2009), 697. doi: 10.1090/S0002-9947-08-04453-X.

[31]

O. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).

[32]

Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27. doi: 10.1007/BF02786551.

[33]

V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains,, Manuscripta Math., 115 (2004), 521. doi: 10.1007/s00229-004-0514-5.

[34]

J. Serrin and H. Zou, Existence and non-existence results for ground states of quasi-linear elliptic equations,, Arch. Rat. Mech. Anal., 121 (1992), 101. doi: 10.1007/BF00375415.

[35]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79. doi: 10.1007/BF02392645.

[36]

P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Elect. J. Diff. Eqns., 2001 (2001), 1.

[37]

F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler,, Acta Math. Univ. Comenianae, 65 (1996), 53.

[1]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[2]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[3]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[4]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[5]

Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617

[6]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[7]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[8]

Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206

[9]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[10]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[11]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[12]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2018, 0 (0) : 1-19. doi: 10.3934/dcds.2018130

[13]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[14]

Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks & Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967

[15]

Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527

[16]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[17]

Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665

[18]

Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031

[19]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[20]

Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

[Back to Top]