-
Previous Article
Laminations from the main cubioid
- DCDS Home
- This Issue
-
Next Article
Classifying GL$(n,\mathbb{Z})$-orbits of points and rational subspaces
Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems
1. | Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna, Spain |
2. | Dpto. de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna |
3. | Departamento de Matemática, Universidad Técnico Fedrico Santa María, Casilla V-110, Avda. España, 1680 - Valparaíso, Chile |
References:
[1] |
S. Alarcón, M. Burgos-Pérez, J. García Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms,, Differential Equations, 260 (2016), 758.
doi: 10.1016/j.jde.2015.09.004. |
[2] |
S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems,, J. Math. Pures Appl., 99 (2013), 618.
doi: 10.1016/j.matpur.2012.10.001. |
[3] |
S. Alarcón, J. García Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms,, Milan J. Math., 81 (2013), 171.
doi: 10.1007/s00032-013-0197-z. |
[4] |
S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian,, Ann. Scuola Norm. Sup. Pisa., 16 (2016), 129.
doi: 10.2422/2036-2145.201402\_007. |
[5] |
S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Part. Diff. Eqns., 36 (2011), 2011.
doi: 10.1080/03605302.2010.534523. |
[6] |
S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 711.
|
[7] |
C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains,, Arch. Rational Mech. Anal., 112 (1990), 319.
doi: 10.1007/BF02384077. |
[8] |
C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595.
doi: 10.1090/S0002-9947-1989-0937878-9. |
[9] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.
|
[10] |
M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293.
doi: 10.1007/BF00251552. |
[11] |
M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1.
doi: 10.1007/BF02788105. |
[12] |
I. Birindelli and F. Demengel, Some Liouville theorems for the $p$-Laplacian,, 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems. Electr. J. Diff. Eqns. Conf., 8 (2002), 35.
|
[13] |
I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators,, Ann. Fac. Sci. Toulouse, 13 (2004), 261.
doi: 10.5802/afst.1070. |
[14] |
L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213.
|
[15] |
I. Capuzzo Dolcetta and A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities,, Commun. Contemp. Math., 5 (2003), 435.
doi: 10.1142/S0219199703001014. |
[16] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[17] |
M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term,, SIAM J. Math. Anal., 20 (1989), 886.
doi: 10.1137/0520060. |
[18] |
A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. H. Poincaré (C) An. Non Linéaire, 17 (2000), 219.
doi: 10.1016/S0294-1449(00)00109-8. |
[19] |
P. Felmer and A.Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators,, Trans. Amer. Math. Soc., 361 (2009), 5721.
doi: 10.1090/S0002-9947-09-04566-8. |
[20] |
P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Adv. Math., 226 (2011), 2712.
doi: 10.1016/j.aim.2010.09.023. |
[21] |
R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903.
doi: 10.1016/j.na.2008.12.018. |
[22] |
E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity,, Differential Equations, 41 (2005), 693.
doi: 10.1007/s10625-005-0204-4. |
[23] |
E. I. Galakhov, Positive solutions of quasilinear elliptic equations,, Math. Notes, 78 (2005), 185.
doi: 10.1007/s11006-005-0114-z. |
[24] |
B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations,, In Nonlinear partial differential equations in engineering and applied science, (1980), 255.
|
[25] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.
doi: 10.1002/cpa.3160340406. |
[26] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).
doi: 10.1007/978-3-642-61798-0. |
[27] |
O. González-Meléndez and A. Quaas, On critical exponents for Lane-Emden-Fowler type equations with a singular extremal operator,, Submitted for publication., (). |
[28] |
V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 25.
doi: 10.1016/j.anihpc.2004.03.003. |
[29] |
V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains,, In Handbook of differential equations: Stationary partial differential equations, 6 (2008), 177.
doi: 10.1016/S1874-5733(08)80020-4. |
[30] |
V. Kondratiev, V. Liskevich and Z. Sobol, Positive supersolutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,, Trans. Amer. Math. Soc., 361 (2009), 697.
doi: 10.1090/S0002-9947-08-04453-X. |
[31] |
O. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).
|
[32] |
Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27.
doi: 10.1007/BF02786551. |
[33] |
V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains,, Manuscripta Math., 115 (2004), 521.
doi: 10.1007/s00229-004-0514-5. |
[34] |
J. Serrin and H. Zou, Existence and non-existence results for ground states of quasi-linear elliptic equations,, Arch. Rat. Mech. Anal., 121 (1992), 101.
doi: 10.1007/BF00375415. |
[35] |
J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.
doi: 10.1007/BF02392645. |
[36] |
P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Elect. J. Diff. Eqns., 2001 (2001), 1.
|
[37] |
F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler,, Acta Math. Univ. Comenianae, 65 (1996), 53.
|
show all references
References:
[1] |
S. Alarcón, M. Burgos-Pérez, J. García Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms,, Differential Equations, 260 (2016), 758.
doi: 10.1016/j.jde.2015.09.004. |
[2] |
S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems,, J. Math. Pures Appl., 99 (2013), 618.
doi: 10.1016/j.matpur.2012.10.001. |
[3] |
S. Alarcón, J. García Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms,, Milan J. Math., 81 (2013), 171.
doi: 10.1007/s00032-013-0197-z. |
[4] |
S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian,, Ann. Scuola Norm. Sup. Pisa., 16 (2016), 129.
doi: 10.2422/2036-2145.201402\_007. |
[5] |
S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Part. Diff. Eqns., 36 (2011), 2011.
doi: 10.1080/03605302.2010.534523. |
[6] |
S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 711.
|
[7] |
C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains,, Arch. Rational Mech. Anal., 112 (1990), 319.
doi: 10.1007/BF02384077. |
[8] |
C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595.
doi: 10.1090/S0002-9947-1989-0937878-9. |
[9] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.
|
[10] |
M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293.
doi: 10.1007/BF00251552. |
[11] |
M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1.
doi: 10.1007/BF02788105. |
[12] |
I. Birindelli and F. Demengel, Some Liouville theorems for the $p$-Laplacian,, 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems. Electr. J. Diff. Eqns. Conf., 8 (2002), 35.
|
[13] |
I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators,, Ann. Fac. Sci. Toulouse, 13 (2004), 261.
doi: 10.5802/afst.1070. |
[14] |
L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213.
|
[15] |
I. Capuzzo Dolcetta and A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities,, Commun. Contemp. Math., 5 (2003), 435.
doi: 10.1142/S0219199703001014. |
[16] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[17] |
M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term,, SIAM J. Math. Anal., 20 (1989), 886.
doi: 10.1137/0520060. |
[18] |
A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. H. Poincaré (C) An. Non Linéaire, 17 (2000), 219.
doi: 10.1016/S0294-1449(00)00109-8. |
[19] |
P. Felmer and A.Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators,, Trans. Amer. Math. Soc., 361 (2009), 5721.
doi: 10.1090/S0002-9947-09-04566-8. |
[20] |
P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Adv. Math., 226 (2011), 2712.
doi: 10.1016/j.aim.2010.09.023. |
[21] |
R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903.
doi: 10.1016/j.na.2008.12.018. |
[22] |
E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity,, Differential Equations, 41 (2005), 693.
doi: 10.1007/s10625-005-0204-4. |
[23] |
E. I. Galakhov, Positive solutions of quasilinear elliptic equations,, Math. Notes, 78 (2005), 185.
doi: 10.1007/s11006-005-0114-z. |
[24] |
B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations,, In Nonlinear partial differential equations in engineering and applied science, (1980), 255.
|
[25] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.
doi: 10.1002/cpa.3160340406. |
[26] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).
doi: 10.1007/978-3-642-61798-0. |
[27] |
O. González-Meléndez and A. Quaas, On critical exponents for Lane-Emden-Fowler type equations with a singular extremal operator,, Submitted for publication., (). |
[28] |
V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 25.
doi: 10.1016/j.anihpc.2004.03.003. |
[29] |
V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains,, In Handbook of differential equations: Stationary partial differential equations, 6 (2008), 177.
doi: 10.1016/S1874-5733(08)80020-4. |
[30] |
V. Kondratiev, V. Liskevich and Z. Sobol, Positive supersolutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,, Trans. Amer. Math. Soc., 361 (2009), 697.
doi: 10.1090/S0002-9947-08-04453-X. |
[31] |
O. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).
|
[32] |
Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27.
doi: 10.1007/BF02786551. |
[33] |
V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains,, Manuscripta Math., 115 (2004), 521.
doi: 10.1007/s00229-004-0514-5. |
[34] |
J. Serrin and H. Zou, Existence and non-existence results for ground states of quasi-linear elliptic equations,, Arch. Rat. Mech. Anal., 121 (1992), 101.
doi: 10.1007/BF00375415. |
[35] |
J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.
doi: 10.1007/BF02392645. |
[36] |
P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Elect. J. Diff. Eqns., 2001 (2001), 1.
|
[37] |
F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler,, Acta Math. Univ. Comenianae, 65 (1996), 53.
|
[1] |
Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869 |
[2] |
Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377 |
[3] |
SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026 |
[4] |
Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340 |
[5] |
Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617 |
[6] |
Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006 |
[7] |
Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31 |
[8] |
Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206 |
[9] |
Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011 |
[10] |
Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719 |
[11] |
Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017 |
[12] |
Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2018, 0 (0) : 1-19. doi: 10.3934/dcds.2018130 |
[13] |
Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293 |
[14] |
Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks & Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967 |
[15] |
Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527 |
[16] |
Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947 |
[17] |
Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665 |
[18] |
Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031 |
[19] |
Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713 |
[20] |
Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481 |
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]