September  2016, 36(9): 4703-4721. doi: 10.3934/dcds.2016004

Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems

1. 

Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna, Spain

2. 

Dpto. de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna

3. 

Departamento de Matemática, Universidad Técnico Fedrico Santa María, Casilla V-110, Avda. España, 1680 - Valparaíso, Chile

Received  May 2015 Revised  January 2016 Published  May 2016

In this paper we consider positive supersolutions of the elliptic equation $-\triangle u = f(u) |\nabla u|^q$, posed in exterior domains of $\mathbb{R}^N$ ($N\ge 2$), where $f$ is continuous in $[0,+\infty)$ and positive in $(0,+\infty)$ and $q>0$. We classify supersolutions $u$ into four types depending on the function $m(R)=\inf_{|x|=R} u(x)$ for large $R$, and give necessary and sufficient conditions in order to have supersolutions of each of these types. As a consequence, we also obtain Liouville theorems for supersolutions depending on the values of $N$, $q$ and on some integrability properties on $f$ at zero or infinity. We also describe these questions when the equation is posed in the whole $\mathbb{R}^N$.
Citation: M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004
References:
[1]

S. Alarcón, M. Burgos-Pérez, J. García Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms,, Differential Equations, 260 (2016), 758.  doi: 10.1016/j.jde.2015.09.004.  Google Scholar

[2]

S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems,, J. Math. Pures Appl., 99 (2013), 618.  doi: 10.1016/j.matpur.2012.10.001.  Google Scholar

[3]

S. Alarcón, J. García Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms,, Milan J. Math., 81 (2013), 171.  doi: 10.1007/s00032-013-0197-z.  Google Scholar

[4]

S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian,, Ann. Scuola Norm. Sup. Pisa., 16 (2016), 129.  doi: 10.2422/2036-2145.201402\_007.  Google Scholar

[5]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Part. Diff. Eqns., 36 (2011), 2011.  doi: 10.1080/03605302.2010.534523.  Google Scholar

[6]

S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 711.   Google Scholar

[7]

C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains,, Arch. Rational Mech. Anal., 112 (1990), 319.  doi: 10.1007/BF02384077.  Google Scholar

[8]

C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595.  doi: 10.1090/S0002-9947-1989-0937878-9.  Google Scholar

[9]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.   Google Scholar

[10]

M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293.  doi: 10.1007/BF00251552.  Google Scholar

[11]

M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1.  doi: 10.1007/BF02788105.  Google Scholar

[12]

I. Birindelli and F. Demengel, Some Liouville theorems for the $p$-Laplacian,, 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems. Electr. J. Diff. Eqns. Conf., 8 (2002), 35.   Google Scholar

[13]

I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators,, Ann. Fac. Sci. Toulouse, 13 (2004), 261.  doi: 10.5802/afst.1070.  Google Scholar

[14]

L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213.   Google Scholar

[15]

I. Capuzzo Dolcetta and A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities,, Commun. Contemp. Math., 5 (2003), 435.  doi: 10.1142/S0219199703001014.  Google Scholar

[16]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[17]

M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term,, SIAM J. Math. Anal., 20 (1989), 886.  doi: 10.1137/0520060.  Google Scholar

[18]

A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. H. Poincaré (C) An. Non Linéaire, 17 (2000), 219.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[19]

P. Felmer and A.Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators,, Trans. Amer. Math. Soc., 361 (2009), 5721.  doi: 10.1090/S0002-9947-09-04566-8.  Google Scholar

[20]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Adv. Math., 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[21]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903.  doi: 10.1016/j.na.2008.12.018.  Google Scholar

[22]

E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity,, Differential Equations, 41 (2005), 693.  doi: 10.1007/s10625-005-0204-4.  Google Scholar

[23]

E. I. Galakhov, Positive solutions of quasilinear elliptic equations,, Math. Notes, 78 (2005), 185.  doi: 10.1007/s11006-005-0114-z.  Google Scholar

[24]

B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations,, In Nonlinear partial differential equations in engineering and applied science, (1980), 255.   Google Scholar

[25]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[26]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[27]

O. González-Meléndez and A. Quaas, On critical exponents for Lane-Emden-Fowler type equations with a singular extremal operator,, Submitted for publication., ().   Google Scholar

[28]

V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 25.  doi: 10.1016/j.anihpc.2004.03.003.  Google Scholar

[29]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains,, In Handbook of differential equations: Stationary partial differential equations, 6 (2008), 177.  doi: 10.1016/S1874-5733(08)80020-4.  Google Scholar

[30]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive supersolutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,, Trans. Amer. Math. Soc., 361 (2009), 697.  doi: 10.1090/S0002-9947-08-04453-X.  Google Scholar

[31]

O. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).   Google Scholar

[32]

Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[33]

V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains,, Manuscripta Math., 115 (2004), 521.  doi: 10.1007/s00229-004-0514-5.  Google Scholar

[34]

J. Serrin and H. Zou, Existence and non-existence results for ground states of quasi-linear elliptic equations,, Arch. Rat. Mech. Anal., 121 (1992), 101.  doi: 10.1007/BF00375415.  Google Scholar

[35]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.  doi: 10.1007/BF02392645.  Google Scholar

[36]

P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Elect. J. Diff. Eqns., 2001 (2001), 1.   Google Scholar

[37]

F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler,, Acta Math. Univ. Comenianae, 65 (1996), 53.   Google Scholar

show all references

References:
[1]

S. Alarcón, M. Burgos-Pérez, J. García Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms,, Differential Equations, 260 (2016), 758.  doi: 10.1016/j.jde.2015.09.004.  Google Scholar

[2]

S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems,, J. Math. Pures Appl., 99 (2013), 618.  doi: 10.1016/j.matpur.2012.10.001.  Google Scholar

[3]

S. Alarcón, J. García Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms,, Milan J. Math., 81 (2013), 171.  doi: 10.1007/s00032-013-0197-z.  Google Scholar

[4]

S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian,, Ann. Scuola Norm. Sup. Pisa., 16 (2016), 129.  doi: 10.2422/2036-2145.201402\_007.  Google Scholar

[5]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Part. Diff. Eqns., 36 (2011), 2011.  doi: 10.1080/03605302.2010.534523.  Google Scholar

[6]

S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 711.   Google Scholar

[7]

C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains,, Arch. Rational Mech. Anal., 112 (1990), 319.  doi: 10.1007/BF02384077.  Google Scholar

[8]

C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595.  doi: 10.1090/S0002-9947-1989-0937878-9.  Google Scholar

[9]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.   Google Scholar

[10]

M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293.  doi: 10.1007/BF00251552.  Google Scholar

[11]

M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1.  doi: 10.1007/BF02788105.  Google Scholar

[12]

I. Birindelli and F. Demengel, Some Liouville theorems for the $p$-Laplacian,, 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems. Electr. J. Diff. Eqns. Conf., 8 (2002), 35.   Google Scholar

[13]

I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators,, Ann. Fac. Sci. Toulouse, 13 (2004), 261.  doi: 10.5802/afst.1070.  Google Scholar

[14]

L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213.   Google Scholar

[15]

I. Capuzzo Dolcetta and A. Cutrì, Hadamard and Liouville type results for fully nonlinear partial differential inequalities,, Commun. Contemp. Math., 5 (2003), 435.  doi: 10.1142/S0219199703001014.  Google Scholar

[16]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[17]

M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term,, SIAM J. Math. Anal., 20 (1989), 886.  doi: 10.1137/0520060.  Google Scholar

[18]

A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. H. Poincaré (C) An. Non Linéaire, 17 (2000), 219.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[19]

P. Felmer and A.Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators,, Trans. Amer. Math. Soc., 361 (2009), 5721.  doi: 10.1090/S0002-9947-09-04566-8.  Google Scholar

[20]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Adv. Math., 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[21]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903.  doi: 10.1016/j.na.2008.12.018.  Google Scholar

[22]

E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity,, Differential Equations, 41 (2005), 693.  doi: 10.1007/s10625-005-0204-4.  Google Scholar

[23]

E. I. Galakhov, Positive solutions of quasilinear elliptic equations,, Math. Notes, 78 (2005), 185.  doi: 10.1007/s11006-005-0114-z.  Google Scholar

[24]

B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations,, In Nonlinear partial differential equations in engineering and applied science, (1980), 255.   Google Scholar

[25]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[26]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[27]

O. González-Meléndez and A. Quaas, On critical exponents for Lane-Emden-Fowler type equations with a singular extremal operator,, Submitted for publication., ().   Google Scholar

[28]

V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 25.  doi: 10.1016/j.anihpc.2004.03.003.  Google Scholar

[29]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains,, In Handbook of differential equations: Stationary partial differential equations, 6 (2008), 177.  doi: 10.1016/S1874-5733(08)80020-4.  Google Scholar

[30]

V. Kondratiev, V. Liskevich and Z. Sobol, Positive supersolutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,, Trans. Amer. Math. Soc., 361 (2009), 697.  doi: 10.1090/S0002-9947-08-04453-X.  Google Scholar

[31]

O. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).   Google Scholar

[32]

Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[33]

V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains,, Manuscripta Math., 115 (2004), 521.  doi: 10.1007/s00229-004-0514-5.  Google Scholar

[34]

J. Serrin and H. Zou, Existence and non-existence results for ground states of quasi-linear elliptic equations,, Arch. Rat. Mech. Anal., 121 (1992), 101.  doi: 10.1007/BF00375415.  Google Scholar

[35]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.  doi: 10.1007/BF02392645.  Google Scholar

[36]

P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Elect. J. Diff. Eqns., 2001 (2001), 1.   Google Scholar

[37]

F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler,, Acta Math. Univ. Comenianae, 65 (1996), 53.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[3]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[7]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[10]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[11]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[12]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[13]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (4)

[Back to Top]