# American Institue of Mathematical Sciences

2016, 5(2): 225-234. doi: 10.3934/eect.2016002

## Blowup and ill-posedness results for a Dirac equation without gauge invariance

 1 Dipartimento di Matematica, Unversità di Roma "La Sapienza", Piazzale A. More 2, 00185 Roma, Italy 2 Department of Mathematics, Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553

Received  January 2016 Revised  April 2016 Published  June 2016

We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, non gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\mathbb{R} ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\mathbb{R} ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1< p <1+\frac1n$ (or $1< p <1+\frac2n$ in $n=1,2,3$), there exist arbitrarily small initial data data for which the solution blows up in a finite time.
Citation: Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002
##### References:
 [1] I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43. doi: 10.1007/s00220-014-2164-0. [2] I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515. doi: 10.1007/s00220-015-2508-4. [3] N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., (). doi: 10.1093/imrn/rnv361. [4] T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643. [5] T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003). [6] M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338. doi: 10.1137/S0036141095283017. [7] R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323. doi: 10.1007/BF01162066. [8] M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275. [9] M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571. doi: 10.1007/s00028-015-0273-7. [10] M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758. doi: 10.1016/j.jmaa.2015.01.003. [11] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235. doi: 10.1007/BF01647974. [12] S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1. doi: 10.1016/j.jfa.2004.07.005. [13] T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389. doi: 10.1016/j.crma.2012.04.009. [14] H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673. doi: 10.3934/cpaa.2014.13.673. [15] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996). doi: 10.1515/9783110812411. [16] T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378. doi: 10.1016/0022-0396(84)90169-4. [17] Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515. doi: 10.1215/S0012-7094-99-09719-3. [18] Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109. doi: 10.1016/S0764-4442(01)01999-1.

show all references

##### References:
 [1] I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43. doi: 10.1007/s00220-014-2164-0. [2] I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515. doi: 10.1007/s00220-015-2508-4. [3] N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., (). doi: 10.1093/imrn/rnv361. [4] T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643. [5] T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003). [6] M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338. doi: 10.1137/S0036141095283017. [7] R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323. doi: 10.1007/BF01162066. [8] M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275. [9] M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571. doi: 10.1007/s00028-015-0273-7. [10] M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758. doi: 10.1016/j.jmaa.2015.01.003. [11] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235. doi: 10.1007/BF01647974. [12] S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1. doi: 10.1016/j.jfa.2004.07.005. [13] T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389. doi: 10.1016/j.crma.2012.04.009. [14] H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673. doi: 10.3934/cpaa.2014.13.673. [15] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996). doi: 10.1515/9783110812411. [16] T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378. doi: 10.1016/0022-0396(84)90169-4. [17] Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515. doi: 10.1215/S0012-7094-99-09719-3. [18] Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109. doi: 10.1016/S0764-4442(01)01999-1.
 [1] Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055 [2] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [3] Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 [4] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [5] Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237 [6] Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069 [7] Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663 [8] Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011 [9] Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271 [10] Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037 [11] Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 [12] Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 [13] Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 [14] Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569 [15] Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 [16] Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657 [17] Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002 [18] Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 [19] Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 [20] Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

2016 Impact Factor: 0.826