2016, 5(2): 225-234. doi: 10.3934/eect.2016002

Blowup and ill-posedness results for a Dirac equation without gauge invariance

1. 

Dipartimento di Matematica, Unversità di Roma "La Sapienza", Piazzale A. More 2, 00185 Roma, Italy

2. 

Department of Mathematics, Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553

Received  January 2016 Revised  April 2016 Published  June 2016

We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, non gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\mathbb{R} ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\mathbb{R} ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1< p <1+\frac1n$ (or $1< p <1+\frac2n$ in $n=1,2,3$), there exist arbitrarily small initial data data for which the solution blows up in a finite time.
Citation: Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002
References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43. doi: 10.1007/s00220-014-2164-0.

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515. doi: 10.1007/s00220-015-2508-4.

[3]

N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., (). doi: 10.1093/imrn/rnv361.

[4]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643.

[5]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003).

[6]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338. doi: 10.1137/S0036141095283017.

[7]

R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323. doi: 10.1007/BF01162066.

[8]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275.

[9]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571. doi: 10.1007/s00028-015-0273-7.

[10]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758. doi: 10.1016/j.jmaa.2015.01.003.

[11]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235. doi: 10.1007/BF01647974.

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1. doi: 10.1016/j.jfa.2004.07.005.

[13]

T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389. doi: 10.1016/j.crma.2012.04.009.

[14]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673. doi: 10.3934/cpaa.2014.13.673.

[15]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996). doi: 10.1515/9783110812411.

[16]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378. doi: 10.1016/0022-0396(84)90169-4.

[17]

Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515. doi: 10.1215/S0012-7094-99-09719-3.

[18]

Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109. doi: 10.1016/S0764-4442(01)01999-1.

show all references

References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\mathbbR^3)$,, Comm. Math. Phys., 335 (2015), 43. doi: 10.1007/s00220-014-2164-0.

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{1/2}(\mathbbR^2)$,, Comm. Math. Phys., 343 (2016), 515. doi: 10.1007/s00220-015-2508-4.

[3]

N. Bournaveas and T. Candy, Global well-posedness for the massless cubic Dirac equation,, Int Math Res Notices in press., (). doi: 10.1093/imrn/rnv361.

[4]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension,, Adv. Differential Equations, 16 (2011), 643.

[5]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lect. Notes Math., (2003).

[6]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\mathbbR^3)$ for $s>1$,, SIAM J. Math. Anal., 28 (1997), 338. doi: 10.1137/S0036141095283017.

[7]

R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,, Math. Z., 177 (1981), 323. doi: 10.1007/BF01162066.

[8]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance,, Differential Integral Equations, 26 (2013), 1275.

[9]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance,, J. Evol. Equ., 15 (2015), 571. doi: 10.1007/s00028-015-0273-7.

[10]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance,, J. Math. Anal. Appl., 425 (2015), 758. doi: 10.1016/j.jmaa.2015.01.003.

[11]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235. doi: 10.1007/BF01647974.

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Funct. Anal., 219 (2005), 1. doi: 10.1016/j.jfa.2004.07.005.

[13]

T. Oh, A blowup result for the periodic NLS without gauge invariance,, C. R. Acad. Sci. Paris. Ser., 350 (2012), 389. doi: 10.1016/j.crma.2012.04.009.

[14]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions,, Commun. Pure Appl. Anal., 13 (2014), 673. doi: 10.3934/cpaa.2014.13.673.

[15]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter Series in Nonlinear Analysis and Applications, 3 (1996). doi: 10.1515/9783110812411.

[16]

T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions,, J. Differential Equations, 52 (1984), 378. doi: 10.1016/0022-0396(84)90169-4.

[17]

Q. Zhang, Blow-up results for nonlinear parabolic equations on manifolds,, Duke Math. J., 97 (1999), 515. doi: 10.1215/S0012-7094-99-09719-3.

[18]

Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris, 333 (2001), 109. doi: 10.1016/S0764-4442(01)01999-1.

[1]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[2]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[3]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[4]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[5]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[6]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

[7]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[8]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[9]

Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271

[10]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[11]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[12]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[13]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[14]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

[15]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[16]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[17]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[18]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

2016 Impact Factor: 0.826

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]