2016, 8(2): 139-167. doi: 10.3934/jgm.2016001

Invariant nonholonomic Riemannian structures on three-dimensional Lie groups

1. 

Department of Mathematics (Pure and Applied), Rhodes University, 6140 Grahamstown, South Africa, South Africa, South Africa

2. 

Department of Mathematics, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic and Department of Mathematics, Ghent University, B-9000 Ghent, Belgium

Received  September 2015 Revised  March 2016 Published  June 2016

We consider Riemannian manifolds endowed with a nonholonomic distribution. These structures model mechanical systems with a (positive definite) quadratic Lagrangian and nonholonomic constraints linear in velocities. We classify the left-invariant nonholonomic Riemannian structures on three-dimensional simply connected Lie groups, and describe the equivalence classes in terms of some basic isometric invariants. The classification naturally splits into two cases. In the first case, it reduces to a classification of left-invariant sub-Riemannian structures. In the second case, we find a canonical frame with which to directly compare equivalence classes.
Citation: Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001
References:
[1]

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups,, J. Dyn. Control Syst., 18 (2012), 21. doi: 10.1007/s10883-012-9133-8.

[2]

A. Bloch, Nonholonomic Mechanics and Control,, Springer, (2003). doi: 10.1007/b97376.

[3]

E. Cartan, On the geometric representation of nonholonomic mechanical systems (in French),, in Proceedings of the International Congress of Mathematicians, (1928), 253.

[4]

M. Čech and J. Musilová, Symmetries and currents in nonholonomic mechanics,, Commun. Math., 22 (2014), 159.

[5]

S. Chaplygin, On the theory of motion of nonholonomic systems. The theorem of the Reducing Multiplier (in Russian),, Math. Sbornik, XXVIII (1911), 303.

[6]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Springer, (2002). doi: 10.1007/b84020.

[7]

R. Cushman, H. Duistermaat and J. Śniatycki, Geometry of Nonholonomically Constrained Systems,, World Scientific, (2010).

[8]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics,, Regul. Chaotic Dyn., 8 (2003), 105. doi: 10.1070/RD2003v008n01ABEH000229.

[9]

K. Ehlers, Geometric equivalence on nonholonomic three-manifolds,, in Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, (2003), 246.

[10]

K. Ehlers, J. Koiller, R. Montgomery and P. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, in The Breadth of Symplectic and Poisson Geometry, 232 (2005), 75. doi: 10.1007/0-8176-4419-9_4.

[11]

Y. Fedorov and L. García-Naranjo, The hydrodynamic Chaplygin sleigh,, J. Phys. A: Math. Theor., 43 (2010). doi: 10.1088/1751-8113/43/43/434013.

[12]

Y. Fedorov and B. Jovanović, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces,, J. Nonlinear Sci., 14 (2004), 341. doi: 10.1007/s00332-004-0603-3.

[13]

Y. Fedorov, A. Maciejewski and M. Przybylska, The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions,, Nonlinearity, 22 (2009), 2231. doi: 10.1088/0951-7715/22/9/009.

[14]

B. Jovanović, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555. doi: 10.1088/0951-7715/14/6/308.

[15]

J. Koiller, P. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan,, An. Acad. Bras. Cienc., 73 (2001), 165. doi: 10.1590/S0001-37652001000200003.

[16]

V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras (in Russian),, Funkt. Anal. Prilozh., 22 (1988), 69. doi: 10.1007/BF01077727.

[17]

A. Krasiński, C. Behr, E. Schücking, F. Estabrook, H. Wahlquist, G. Ellis, R. Jantzen and W. Kundt, The Bianchi classification in the Schücking-Behr approach,, Gen. Relativ. Gravit., 35 (2003), 475. doi: 10.1023/A:1022382202778.

[18]

O. Krupková, Geometric mechanics on nonholonomic submanifolds,, Commun. Math., 18 (2010), 51.

[19]

B. Langerock, Nonholonomic mechanics and connections over a bundle map,, J. Phys. A: Math. Gen., 34 (2001). doi: 10.1088/0305-4470/34/44/102.

[20]

A. Lewis, Affine connections and distributions with applications to nonholonomic mechanics,, Rep. Math. Phys., 42 (1998), 135. doi: 10.1016/S0034-4877(98)80008-6.

[21]

A. Lewis, Simple mechanical control systems with constraints,, IEEE Trans. Automat. Control, 45 (2000), 1420. doi: 10.1109/9.871752.

[22]

M. MacCallum, On the classification of the real four-dimensional Lie algebras,, in On Einstein's Path: Essays in Honour of E. Schücking (ed. A. Harvey), (1999), 299.

[23]

G. Mubarakzyanov, On solvable Lie algebras (in Russian),, Izv. Vysš. Učehn. Zaved. Matematika, 32 (1963), 114.

[24]

J. Neimark and N. Fufaev, Dynamics of Nonholonomic Systems,, American Mathematical Society, (1972).

[25]

X. Pennec and V. Arsigny, Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups,, in Matrix Information Geometry (eds. F. Nielsen and R. Bhatia), (2013), 123. doi: 10.1007/978-3-642-30232-9_7.

[26]

M. Postnikov, Geometry VI: Riemannian Geometry,, Springer, (2001).

[27]

O. Rossi and J. Musilová,, The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles,, J. Phys. A: Math. Theor., 45 (2012). doi: 10.1088/1751-8113/45/25/255202.

[28]

W. Sarlet, A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems,, Extracta Math., 11 (1996), 202.

[29]

G. Suslov, Theoretical Mechanics (in Russian),, Gostekhizdat, (1946).

[30]

M. Swaczyna, Several examples of nonholonomic mechanical systems,, Commun. Math., 19 (2011), 27.

[31]

M. Swaczyna and P. Volný, Uniform projectile motion: Dynamics, symmetries and conservation laws,, Rep. Math. Phys., 73 (2014), 177. doi: 10.1016/S0034-4877(14)60039-2.

[32]

J. Tavares, About Cartan geometrization of non-holonomic mechanics,, J. Geom. Phys., 45 (2003), 1. doi: 10.1016/S0393-0440(02)00118-3.

[33]

A. Vershik, Classical and non-classical dynamics with constraints,, in Global Analysis. Studies and Applications I (eds. Y. Borisovich and Y. Gliklikh), 1108 (1984), 278. doi: 10.1007/BFb0099563.

[34]

A. Vershik and L. Faddeev, Differential geometry and Lagrangian mechanics with constraints,, Sov. Phys. Dokl., 17 (1972), 34.

[35]

A. Vershik and V. Gershkovich, Nonholonomic problems and the theory of distributions,, Acta Appl. Math., 12 (1988), 181. doi: 10.1007/BF00047498.

[36]

A. Vershik and V. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems,, in Dynamical Systems VII (eds. V. Arnol'd and S. Novikov), (1994), 1.

[37]

A. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups,, Math. Notes, 44 (1988), 810. doi: 10.1007/BF01158420.

show all references

References:
[1]

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups,, J. Dyn. Control Syst., 18 (2012), 21. doi: 10.1007/s10883-012-9133-8.

[2]

A. Bloch, Nonholonomic Mechanics and Control,, Springer, (2003). doi: 10.1007/b97376.

[3]

E. Cartan, On the geometric representation of nonholonomic mechanical systems (in French),, in Proceedings of the International Congress of Mathematicians, (1928), 253.

[4]

M. Čech and J. Musilová, Symmetries and currents in nonholonomic mechanics,, Commun. Math., 22 (2014), 159.

[5]

S. Chaplygin, On the theory of motion of nonholonomic systems. The theorem of the Reducing Multiplier (in Russian),, Math. Sbornik, XXVIII (1911), 303.

[6]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Springer, (2002). doi: 10.1007/b84020.

[7]

R. Cushman, H. Duistermaat and J. Śniatycki, Geometry of Nonholonomically Constrained Systems,, World Scientific, (2010).

[8]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics,, Regul. Chaotic Dyn., 8 (2003), 105. doi: 10.1070/RD2003v008n01ABEH000229.

[9]

K. Ehlers, Geometric equivalence on nonholonomic three-manifolds,, in Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, (2003), 246.

[10]

K. Ehlers, J. Koiller, R. Montgomery and P. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, in The Breadth of Symplectic and Poisson Geometry, 232 (2005), 75. doi: 10.1007/0-8176-4419-9_4.

[11]

Y. Fedorov and L. García-Naranjo, The hydrodynamic Chaplygin sleigh,, J. Phys. A: Math. Theor., 43 (2010). doi: 10.1088/1751-8113/43/43/434013.

[12]

Y. Fedorov and B. Jovanović, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces,, J. Nonlinear Sci., 14 (2004), 341. doi: 10.1007/s00332-004-0603-3.

[13]

Y. Fedorov, A. Maciejewski and M. Przybylska, The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions,, Nonlinearity, 22 (2009), 2231. doi: 10.1088/0951-7715/22/9/009.

[14]

B. Jovanović, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555. doi: 10.1088/0951-7715/14/6/308.

[15]

J. Koiller, P. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan,, An. Acad. Bras. Cienc., 73 (2001), 165. doi: 10.1590/S0001-37652001000200003.

[16]

V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras (in Russian),, Funkt. Anal. Prilozh., 22 (1988), 69. doi: 10.1007/BF01077727.

[17]

A. Krasiński, C. Behr, E. Schücking, F. Estabrook, H. Wahlquist, G. Ellis, R. Jantzen and W. Kundt, The Bianchi classification in the Schücking-Behr approach,, Gen. Relativ. Gravit., 35 (2003), 475. doi: 10.1023/A:1022382202778.

[18]

O. Krupková, Geometric mechanics on nonholonomic submanifolds,, Commun. Math., 18 (2010), 51.

[19]

B. Langerock, Nonholonomic mechanics and connections over a bundle map,, J. Phys. A: Math. Gen., 34 (2001). doi: 10.1088/0305-4470/34/44/102.

[20]

A. Lewis, Affine connections and distributions with applications to nonholonomic mechanics,, Rep. Math. Phys., 42 (1998), 135. doi: 10.1016/S0034-4877(98)80008-6.

[21]

A. Lewis, Simple mechanical control systems with constraints,, IEEE Trans. Automat. Control, 45 (2000), 1420. doi: 10.1109/9.871752.

[22]

M. MacCallum, On the classification of the real four-dimensional Lie algebras,, in On Einstein's Path: Essays in Honour of E. Schücking (ed. A. Harvey), (1999), 299.

[23]

G. Mubarakzyanov, On solvable Lie algebras (in Russian),, Izv. Vysš. Učehn. Zaved. Matematika, 32 (1963), 114.

[24]

J. Neimark and N. Fufaev, Dynamics of Nonholonomic Systems,, American Mathematical Society, (1972).

[25]

X. Pennec and V. Arsigny, Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups,, in Matrix Information Geometry (eds. F. Nielsen and R. Bhatia), (2013), 123. doi: 10.1007/978-3-642-30232-9_7.

[26]

M. Postnikov, Geometry VI: Riemannian Geometry,, Springer, (2001).

[27]

O. Rossi and J. Musilová,, The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles,, J. Phys. A: Math. Theor., 45 (2012). doi: 10.1088/1751-8113/45/25/255202.

[28]

W. Sarlet, A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems,, Extracta Math., 11 (1996), 202.

[29]

G. Suslov, Theoretical Mechanics (in Russian),, Gostekhizdat, (1946).

[30]

M. Swaczyna, Several examples of nonholonomic mechanical systems,, Commun. Math., 19 (2011), 27.

[31]

M. Swaczyna and P. Volný, Uniform projectile motion: Dynamics, symmetries and conservation laws,, Rep. Math. Phys., 73 (2014), 177. doi: 10.1016/S0034-4877(14)60039-2.

[32]

J. Tavares, About Cartan geometrization of non-holonomic mechanics,, J. Geom. Phys., 45 (2003), 1. doi: 10.1016/S0393-0440(02)00118-3.

[33]

A. Vershik, Classical and non-classical dynamics with constraints,, in Global Analysis. Studies and Applications I (eds. Y. Borisovich and Y. Gliklikh), 1108 (1984), 278. doi: 10.1007/BFb0099563.

[34]

A. Vershik and L. Faddeev, Differential geometry and Lagrangian mechanics with constraints,, Sov. Phys. Dokl., 17 (1972), 34.

[35]

A. Vershik and V. Gershkovich, Nonholonomic problems and the theory of distributions,, Acta Appl. Math., 12 (1988), 181. doi: 10.1007/BF00047498.

[36]

A. Vershik and V. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems,, in Dynamical Systems VII (eds. V. Arnol'd and S. Novikov), (1994), 1.

[37]

A. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups,, Math. Notes, 44 (1988), 810. doi: 10.1007/BF01158420.

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[2]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[3]

Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189

[4]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[5]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[6]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[7]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[8]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[9]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[10]

Andrey Tsiganov. Integrable Euler top and nonholonomic Chaplygin ball. Journal of Geometric Mechanics, 2011, 3 (3) : 337-362. doi: 10.3934/jgm.2011.3.337

[11]

Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43

[12]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389

[13]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[14]

María Barbero-Liñán, Miguel C. Muñoz-Lecanda. Strict abnormal extremals in nonholonomic and kinematic control systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 1-17. doi: 10.3934/dcdss.2010.3.1

[15]

A. Agrachev and A. Marigo. Nonholonomic tangent spaces: intrinsic construction and rigid dimensions. Electronic Research Announcements, 2003, 9: 111-120.

[16]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[17]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[18]

Kurt Ehlers. Geometric equivalence on nonholonomic three-manifolds. Conference Publications, 2003, 2003 (Special) : 246-255. doi: 10.3934/proc.2003.2003.246

[19]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[20]

Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]