June  2016, 8(2): 199-220. doi: 10.3934/jgm.2016004

Infinitesimally natural principal bundles

1. 

Universiteit Utrecht, Budapestlaan 6, 3584 CD Utrecht, Netherlands

Received  June 2015 Revised  April 2016 Published  June 2016

We extend the notion of a natural fibre bundle by requiring diffeomorphisms of the base to lift to automorphisms of the bundle only infinitesimally, i.e. at the level of the Lie algebra of vector fields. We classify the principal fibre bundles with this property. A version of the main result in this paper (theorem 4.4) can be found in Lecomte's work [12]. Our approach was developed independently, uses the language of Lie algebroids, and can be generalized in several directions.
Citation: Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004
References:
[1]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1997).  doi: 10.1007/978-1-4757-6800-8.  Google Scholar

[2]

D. W. Barnes, Nilpotency of Lie algebras,, Math. Zeitschr., 79 (1962), 237.  doi: 10.1007/BF01193118.  Google Scholar

[3]

M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T,, Rev. Math. Phys., 13 (2001), 953.  doi: 10.1142/S0129055X01000922.  Google Scholar

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[5]

D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,, Proc. London Math. Soc., 38 (1979), 219.  doi: 10.1112/plms/s3-38.2.219.  Google Scholar

[6]

D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras,, Contemporary Soviet Mathematics, (1986).   Google Scholar

[7]

H. Glöckner, Differentiable mappings between spaces of sections, 2002., arXiv:1308.1172., ().   Google Scholar

[8]

J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid,, Transform. Groups, 16 (2011), 137.  doi: 10.1007/s00031-011-9126-9.  Google Scholar

[9]

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,, Graduate Texts in Mathematics, (1972).   Google Scholar

[10]

A. W. Knapp, Lie Groups Beyond an Introduction,, Birkhäuser, (1996).  doi: 10.1007/978-1-4757-2453-0.  Google Scholar

[11]

H. B. Lawson and M.-L. Michelsohn, Spin geometry,, Princeton University Press, (1994).   Google Scholar

[12]

P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal,, Bulletin de la S. M. F., 113 (1985), 259.   Google Scholar

[13]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series., Cambridge University Press, (1987).  doi: 10.1017/CBO9780511661839.  Google Scholar

[14]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions,, Amer. J. Math., 124 (2002), 567.  doi: 10.1353/ajm.2002.0019.  Google Scholar

[15]

S. Morrison, Classifying Spinor Structures,, Master's thesis, (2001).   Google Scholar

[16]

K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445.  doi: 10.1016/S0040-9383(98)00069-X.  Google Scholar

[17]

A. Nijenhuis, Theory of the Geometric Object, 1952., Doctoral thesis, ().   Google Scholar

[18]

A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields,, In Proc. Internat. Congress Math. 1958, (1958), 463.   Google Scholar

[19]

A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited,, In Differential geometry (in honor of Kentaro Yano), (1972), 317.   Google Scholar

[20]

R. S. Palais and C. L. Terng, Natural bundles have finite order,, Topology, 19 (1977), 271.   Google Scholar

[21]

J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels»,, Math. Scand., 8 (1960), 116.   Google Scholar

[22]

J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales,, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907.   Google Scholar

[23]

S. E. Salvioli, On the theory of geometric objects,, J. Diff. Geom., 7 (1972), 257.   Google Scholar

[24]

J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object,, Proc. London Math. Soc., S2-42 (1937), 2.  doi: 10.1112/plms/s2-42.1.356.  Google Scholar

[25]

M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold,, Proc. Amer. Math. Soc., 5 (1954), 468.  doi: 10.1090/S0002-9939-1954-0064764-3.  Google Scholar

[26]

Kōji Shiga and Toru Tsujishita, Differential representations of vector fields,, Kōdai Math. Sem. Rep., 28 (): 214.   Google Scholar

[27]

F. Takens, Derivations of vector fields,, Comp. Math., 26 (1973), 151.   Google Scholar

[28]

C. L. Terng, Natural vector bundles and natural differential operators,, Am. J. Math., 100 (1978), 775.  doi: 10.2307/2373910.  Google Scholar

[29]

A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie,, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366.   Google Scholar

show all references

References:
[1]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1997).  doi: 10.1007/978-1-4757-6800-8.  Google Scholar

[2]

D. W. Barnes, Nilpotency of Lie algebras,, Math. Zeitschr., 79 (1962), 237.  doi: 10.1007/BF01193118.  Google Scholar

[3]

M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T,, Rev. Math. Phys., 13 (2001), 953.  doi: 10.1142/S0129055X01000922.  Google Scholar

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[5]

D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,, Proc. London Math. Soc., 38 (1979), 219.  doi: 10.1112/plms/s3-38.2.219.  Google Scholar

[6]

D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras,, Contemporary Soviet Mathematics, (1986).   Google Scholar

[7]

H. Glöckner, Differentiable mappings between spaces of sections, 2002., arXiv:1308.1172., ().   Google Scholar

[8]

J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid,, Transform. Groups, 16 (2011), 137.  doi: 10.1007/s00031-011-9126-9.  Google Scholar

[9]

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,, Graduate Texts in Mathematics, (1972).   Google Scholar

[10]

A. W. Knapp, Lie Groups Beyond an Introduction,, Birkhäuser, (1996).  doi: 10.1007/978-1-4757-2453-0.  Google Scholar

[11]

H. B. Lawson and M.-L. Michelsohn, Spin geometry,, Princeton University Press, (1994).   Google Scholar

[12]

P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal,, Bulletin de la S. M. F., 113 (1985), 259.   Google Scholar

[13]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series., Cambridge University Press, (1987).  doi: 10.1017/CBO9780511661839.  Google Scholar

[14]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions,, Amer. J. Math., 124 (2002), 567.  doi: 10.1353/ajm.2002.0019.  Google Scholar

[15]

S. Morrison, Classifying Spinor Structures,, Master's thesis, (2001).   Google Scholar

[16]

K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445.  doi: 10.1016/S0040-9383(98)00069-X.  Google Scholar

[17]

A. Nijenhuis, Theory of the Geometric Object, 1952., Doctoral thesis, ().   Google Scholar

[18]

A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields,, In Proc. Internat. Congress Math. 1958, (1958), 463.   Google Scholar

[19]

A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited,, In Differential geometry (in honor of Kentaro Yano), (1972), 317.   Google Scholar

[20]

R. S. Palais and C. L. Terng, Natural bundles have finite order,, Topology, 19 (1977), 271.   Google Scholar

[21]

J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels»,, Math. Scand., 8 (1960), 116.   Google Scholar

[22]

J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales,, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907.   Google Scholar

[23]

S. E. Salvioli, On the theory of geometric objects,, J. Diff. Geom., 7 (1972), 257.   Google Scholar

[24]

J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object,, Proc. London Math. Soc., S2-42 (1937), 2.  doi: 10.1112/plms/s2-42.1.356.  Google Scholar

[25]

M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold,, Proc. Amer. Math. Soc., 5 (1954), 468.  doi: 10.1090/S0002-9939-1954-0064764-3.  Google Scholar

[26]

Kōji Shiga and Toru Tsujishita, Differential representations of vector fields,, Kōdai Math. Sem. Rep., 28 (): 214.   Google Scholar

[27]

F. Takens, Derivations of vector fields,, Comp. Math., 26 (1973), 151.   Google Scholar

[28]

C. L. Terng, Natural vector bundles and natural differential operators,, Am. J. Math., 100 (1978), 775.  doi: 10.2307/2373910.  Google Scholar

[29]

A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie,, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366.   Google Scholar

[1]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[2]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[3]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[4]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[5]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[6]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[7]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[8]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[9]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]