2016, 8(2): 199-220. doi: 10.3934/jgm.2016004

Infinitesimally natural principal bundles

1. 

Universiteit Utrecht, Budapestlaan 6, 3584 CD Utrecht, Netherlands

Received  June 2015 Revised  April 2016 Published  June 2016

We extend the notion of a natural fibre bundle by requiring diffeomorphisms of the base to lift to automorphisms of the bundle only infinitesimally, i.e. at the level of the Lie algebra of vector fields. We classify the principal fibre bundles with this property. A version of the main result in this paper (theorem 4.4) can be found in Lecomte's work [12]. Our approach was developed independently, uses the language of Lie algebroids, and can be generalized in several directions.
Citation: Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004
References:
[1]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1997). doi: 10.1007/978-1-4757-6800-8.

[2]

D. W. Barnes, Nilpotency of Lie algebras,, Math. Zeitschr., 79 (1962), 237. doi: 10.1007/BF01193118.

[3]

M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T,, Rev. Math. Phys., 13 (2001), 953. doi: 10.1142/S0129055X01000922.

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575. doi: 10.4007/annals.2003.157.575.

[5]

D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,, Proc. London Math. Soc., 38 (1979), 219. doi: 10.1112/plms/s3-38.2.219.

[6]

D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras,, Contemporary Soviet Mathematics, (1986).

[7]

H. Glöckner, Differentiable mappings between spaces of sections, 2002., arXiv:1308.1172., ().

[8]

J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid,, Transform. Groups, 16 (2011), 137. doi: 10.1007/s00031-011-9126-9.

[9]

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,, Graduate Texts in Mathematics, (1972).

[10]

A. W. Knapp, Lie Groups Beyond an Introduction,, Birkhäuser, (1996). doi: 10.1007/978-1-4757-2453-0.

[11]

H. B. Lawson and M.-L. Michelsohn, Spin geometry,, Princeton University Press, (1994).

[12]

P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal,, Bulletin de la S. M. F., 113 (1985), 259.

[13]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series., Cambridge University Press, (1987). doi: 10.1017/CBO9780511661839.

[14]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions,, Amer. J. Math., 124 (2002), 567. doi: 10.1353/ajm.2002.0019.

[15]

S. Morrison, Classifying Spinor Structures,, Master's thesis, (2001).

[16]

K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445. doi: 10.1016/S0040-9383(98)00069-X.

[17]

A. Nijenhuis, Theory of the Geometric Object, 1952., Doctoral thesis, ().

[18]

A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields,, In Proc. Internat. Congress Math. 1958, (1958), 463.

[19]

A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited,, In Differential geometry (in honor of Kentaro Yano), (1972), 317.

[20]

R. S. Palais and C. L. Terng, Natural bundles have finite order,, Topology, 19 (1977), 271.

[21]

J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels»,, Math. Scand., 8 (1960), 116.

[22]

J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales,, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907.

[23]

S. E. Salvioli, On the theory of geometric objects,, J. Diff. Geom., 7 (1972), 257.

[24]

J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object,, Proc. London Math. Soc., S2-42 (1937), 2. doi: 10.1112/plms/s2-42.1.356.

[25]

M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold,, Proc. Amer. Math. Soc., 5 (1954), 468. doi: 10.1090/S0002-9939-1954-0064764-3.

[26]

Kōji Shiga and Toru Tsujishita, Differential representations of vector fields,, Kōdai Math. Sem. Rep., 28 (): 214.

[27]

F. Takens, Derivations of vector fields,, Comp. Math., 26 (1973), 151.

[28]

C. L. Terng, Natural vector bundles and natural differential operators,, Am. J. Math., 100 (1978), 775. doi: 10.2307/2373910.

[29]

A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie,, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366.

show all references

References:
[1]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1997). doi: 10.1007/978-1-4757-6800-8.

[2]

D. W. Barnes, Nilpotency of Lie algebras,, Math. Zeitschr., 79 (1962), 237. doi: 10.1007/BF01193118.

[3]

M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T,, Rev. Math. Phys., 13 (2001), 953. doi: 10.1142/S0129055X01000922.

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575. doi: 10.4007/annals.2003.157.575.

[5]

D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,, Proc. London Math. Soc., 38 (1979), 219. doi: 10.1112/plms/s3-38.2.219.

[6]

D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras,, Contemporary Soviet Mathematics, (1986).

[7]

H. Glöckner, Differentiable mappings between spaces of sections, 2002., arXiv:1308.1172., ().

[8]

J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid,, Transform. Groups, 16 (2011), 137. doi: 10.1007/s00031-011-9126-9.

[9]

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,, Graduate Texts in Mathematics, (1972).

[10]

A. W. Knapp, Lie Groups Beyond an Introduction,, Birkhäuser, (1996). doi: 10.1007/978-1-4757-2453-0.

[11]

H. B. Lawson and M.-L. Michelsohn, Spin geometry,, Princeton University Press, (1994).

[12]

P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal,, Bulletin de la S. M. F., 113 (1985), 259.

[13]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series., Cambridge University Press, (1987). doi: 10.1017/CBO9780511661839.

[14]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions,, Amer. J. Math., 124 (2002), 567. doi: 10.1353/ajm.2002.0019.

[15]

S. Morrison, Classifying Spinor Structures,, Master's thesis, (2001).

[16]

K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445. doi: 10.1016/S0040-9383(98)00069-X.

[17]

A. Nijenhuis, Theory of the Geometric Object, 1952., Doctoral thesis, ().

[18]

A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields,, In Proc. Internat. Congress Math. 1958, (1958), 463.

[19]

A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited,, In Differential geometry (in honor of Kentaro Yano), (1972), 317.

[20]

R. S. Palais and C. L. Terng, Natural bundles have finite order,, Topology, 19 (1977), 271.

[21]

J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels»,, Math. Scand., 8 (1960), 116.

[22]

J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales,, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907.

[23]

S. E. Salvioli, On the theory of geometric objects,, J. Diff. Geom., 7 (1972), 257.

[24]

J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object,, Proc. London Math. Soc., S2-42 (1937), 2. doi: 10.1112/plms/s2-42.1.356.

[25]

M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold,, Proc. Amer. Math. Soc., 5 (1954), 468. doi: 10.1090/S0002-9939-1954-0064764-3.

[26]

Kōji Shiga and Toru Tsujishita, Differential representations of vector fields,, Kōdai Math. Sem. Rep., 28 (): 214.

[27]

F. Takens, Derivations of vector fields,, Comp. Math., 26 (1973), 151.

[28]

C. L. Terng, Natural vector bundles and natural differential operators,, Am. J. Math., 100 (1978), 775. doi: 10.2307/2373910.

[29]

A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie,, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366.

[1]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[2]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[3]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[4]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[5]

Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295

[6]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[7]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[8]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[9]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[10]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[11]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[12]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[13]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[14]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[15]

Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243

[16]

Marco Zambon, Chenchang Zhu. Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 469-485. doi: 10.3934/jgm.2012.4.469

[17]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[18]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[19]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[20]

David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]