• Previous Article
    Modeling the role of healthcare access inequalities in epidemic outcomes
  • MBE Home
  • This Issue
  • Next Article
    Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy
2016, 13(5): 1043-1058. doi: 10.3934/mbe.2016029

Development of a computational model of glucose toxicity in the progression of diabetes mellitus

1. 

Department of Chemistry, University of Puerto Rico at Cayey, Cayey, PR 00736-9997, United States

2. 

Department of Natural Sciences, University of Puerto Rico at Cayey, Cayey, PR 00736-9997, United States, United States

3. 

Department of Mathematics - Physics, University of Puerto Rico at Cayey, Cayey, PR 00736-9997, United States

Received  October 2015 Revised  April 2016 Published  July 2016

Diabetes mellitus is a disease characterized by a range of metabolic complications involving an individual's blood glucose levels, and its main regulator, insulin. These complications can vary largely from person to person depending on their current biophysical state. Biomedical research day-by-day makes strides to impact the lives of patients of a variety of diseases, including diabetes. One large stride that is being made is the generation of techniques to assist physicians to ``personalize medicine''. From available physiological data, biological understanding of the system, and dimensional analysis, a differential equation-based mathematical model was built in a sequential matter, to be able to elucidate clearly how each parameter correlates to the patient's current physiological state. We developed a simple mathematical model that accurately simulates the dynamics between glucose, insulin, and pancreatic $\beta$-cells throughout disease progression with constraints to maintain biological relevance. The current framework is clearly capable of tracking the patient's current progress through the disease, dependent on factors such as latent insulin resistance or an attrite $\beta$-cell population. Further interests would be to develop tools that allow the direct and feasible testing of how effective a given plan of treatment would be at returning the patient to a desirable biophysical state.
Citation: Danilo T. Pérez-Rivera, Verónica L. Torres-Torres, Abraham E. Torres-Colón, Mayteé Cruz-Aponte. Development of a computational model of glucose toxicity in the progression of diabetes mellitus. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1043-1058. doi: 10.3934/mbe.2016029
References:
[1]

Statistics about diabetes: American diabetes association, http://www.diabetes.org/diabetes-basics/statistics/,, Accessed: 2014-04-03., (): 2014. Google Scholar

[2]

V. Åberg, A. Thörne, A. Alvestrand and J. Nordenström, Combined hypertriglyceridemic and insulin-glucose clamps for the characterization of substrate oxidation and plasma elimination of a long-chain triglyceride emulsion in healthy men,, Metabolism, 61 (2012), 221. Google Scholar

[3]

J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry,, 5th edition, (2002). Google Scholar

[4]

J. M. Berg, J. L. Tymoczko and L. Stryer, Glycogen breakdown and synthesis are reciprocally regulated,, in Biochemistry, (2002). Google Scholar

[5]

R. N. Bergman, L. S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: Measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose,, Journal of Clinical Investigation, 68 (1981), 1456. doi: 10.1172/JCI110398. Google Scholar

[6]

M. J. Birnbaum, Turning down insulin signaling,, Journal of Clinical Investigation, 108 (2001), 655. doi: 10.1172/JCI200113714. Google Scholar

[7]

M. Bollen, S. Keppens and W. Stalmans, Specific features of glycogen metabolism in the liver,, Biochem. J, 15 (1998), 19. doi: 10.1042/bj3360019. Google Scholar

[8]

L. Bouwens and I. Rooman, Regulation of pancreatic beta-cell mass,, Physiological reviews, 85 (2005), 1255. doi: 10.1152/physrev.00025.2004. Google Scholar

[9]

A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza and P. C. Butler, $\beta$-cell deficit and increased $\beta$-cell apoptosis in humans with type 2 diabetes,, Diabetes, 52 (2003), 102. Google Scholar

[10]

M. R. Castro, Is hyperinsulinemia a form of diabetes?,, , (): 2014. Google Scholar

[11]

C. M. Elks, N. Mariappan, M. Haque, A. Guggilam, D. S. Majid and J. Francis, Chronic nf-$\kappa$b blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in shr,, American Journal of Physiology-Renal Physiology, 296 (2009). Google Scholar

[12]

M. Elks, Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release.,, Endocrinology, 133 (1993), 208. Google Scholar

[13]

P. Felig and J. Wahren, Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man,, Journal of Clinical Investigation, 50 (1971), 1702. doi: 10.1172/JCI106659. Google Scholar

[14]

J. E. Gerich, The genetic basis of type 2 diabetes mellitus: Impaired insulin secretion versus impaired insulin sensitivity,, Endocrine reviews, 19 (1998), 491. Google Scholar

[15]

S. Gremlich, C. Bonny, G. Waeber and B. Thorens, Fatty acids decrease idx-1 expression in rat pancreatic islets and reduce glut2, glucokinase, insulin, and somatostatin levels,, Journal of Biological Chemistry, 272 (1997), 30261. doi: 10.1074/jbc.272.48.30261. Google Scholar

[16]

M. J. Haller, M. A. Atkinson and D. Schatz, Type 1 diabetes mellitus: Etiology, presentation, and management,, Pediatric Clinics of North America, 52 (2005), 1553. doi: 10.1016/j.pcl.2005.07.006. Google Scholar

[17]

M.-T. Huang and R. L. Veech, Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state,, Journal of Clinical Investigation, 81 (1988), 872. doi: 10.1172/JCI113397. Google Scholar

[18]

R. Lupi and S. Del Prato, $\beta$-cell apoptosis in type 2 diabetes: Quantitative and functional consequences,, Diabetes & metabolism, 34 (2008). Google Scholar

[19]

A. Makroglou, J. Li and Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview,, Applied numerical mathematics, 56 (2006), 559. doi: 10.1016/j.apnum.2005.04.023. Google Scholar

[20]

T. M. Mason, T. Goh, V. Tchipashvili, H. Sandhu, N. Gupta, G. F. Lewis and A. Giacca, Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats,, Diabetes, 48 (1999), 524. doi: 10.2337/diabetes.48.3.524. Google Scholar

[21]

D. Mellitus, Diagnosis and classification of diabetes mellitus,, Diabetes care, 28 (2005). Google Scholar

[22]

S. Y. Morris, How insulin and glucagon work,, , (): 2014. Google Scholar

[23]

R. Murray, D. Bender, K. M. Botham, P. J. Kennelly, V. Rodwell and P. A. Weil, Harpers Illustrated Biochemistry 29/E,, McGraw Hill Professional, (2012). Google Scholar

[24]

J. M. Olefsky, Pathogenesis of insulin resistance and hyperglycemia in non-insulin-dependent diabetes mellitus,, The American Journal of Medicine, 79 (1985), 1. doi: 10.1016/S0002-9343(85)80001-2. Google Scholar

[25]

G. Paolisso, A. Gambardella, L. Amato, R. Tortoriello, A. d'Amore, M. Varricchio and F. d'Onofrio, Opposite effects of short-and long-term fatty acid infusion on insulin secretion in healthy subjects,, Diabetologia, 38 (1995), 1295. doi: 10.1007/BF00401761. Google Scholar

[26]

K. F. Petersen and G. I. Shulman, Etiology of insulin resistance,, The American journal of medicine, 119 (2006). doi: 10.1016/j.amjmed.2006.01.009. Google Scholar

[27]

V. Poitout and R. P. Robertson, Minireview: secondary $\beta$-cell failure in type 2 diabetes?a convergence of glucotoxicity and lipotoxicity,, Endocrinology, 143 (2002), 339. Google Scholar

[28]

K. Polonsky, B. Given, L. Hirsch, E. Shapiro, H. Tillil, C. Beebe, J. Galloway, B. Frank, T. Karrison and E. Van Cauter, Quantitative study of insulin secretion and clearance in normal and obese subjects,, Journal of Clinical Investigation, 81 (1988), 435. doi: 10.1172/JCI113338. Google Scholar

[29]

G. M. Reaven, Role of insulin resistance in human disease,, Role of Insulin Resistance in Human Disease, 1 (1992), 91. doi: 10.1007/978-94-011-2700-4_10. Google Scholar

[30]

J. Reece, L. A. Urry, N. Meyers, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B. Jackson and B. N. Cooke, Campbell Biology,, Pearson Higher Education AU, (2011). Google Scholar

[31]

R. P. Robertson, J. Harmon, P. O. Tran, Y. Tanaka and H. Takahashi, Glucose toxicity in $\beta$-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection,, Diabetes, 52 (2003), 581. Google Scholar

[32]

R. P. Robertson, J. Harmon, P. O. T. Tran and V. Poitout, $\beta$-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes,, Diabetes, 53 (2004). Google Scholar

[33]

R. P. Robertson, L. K. Olson and H.-J. Zhang, Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene,, Diabetes, 43 (1994), 1085. Google Scholar

[34]

S. Robin, Expected blood glucose after a high carb meal,, , (): 2014. Google Scholar

[35]

J. Ruhl, How blood sugar control works-and how it stops working,, , (): 2014. Google Scholar

[36]

Y. SAKO and V. E. GRILL, A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and b cell oxidation through a process likely coupled to fatty acid oxidation*,, Endocrinology, 127 (1990), 1580. doi: 10.1210/endo-127-4-1580. Google Scholar

[37]

G. Scheiner, Strike the spike ii." diabetes self-managment,, , (): 2014. Google Scholar

[38]

O. Shaham, R. Wei, T. J. Wang, C. Ricciardi, G. D. Lewis, R. S. Vasan, S. A. Carr, R. Thadhani, R. E. Gerszten and V. K. Mootha, Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity,, Molecular Systems Biology, 4 (2008). doi: 10.1038/msb.2008.50. Google Scholar

[39]

M. C. Stoppler, Hyperglycemia: Facts on symptom, signs and treatment,, , (): 2014. Google Scholar

[40]

M. Stumvoll, A. Mitrakou, W. Pimenta, T. Jenssen, H. Yki-Järvinen, T. Van Haeften, W. Renn and J. Gerich, Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity,, Diabetes care, 23 (2000), 295. doi: 10.2337/diacare.23.3.295. Google Scholar

[41]

O. Tanner, Intensive versus conventional glucose control in critically ill patients,, Journal of the Intensive Care Society, 10 (2009), 216. doi: 10.1177/175114370901000314. Google Scholar

[42]

B. Topp, K. Promislow, G. Devries, R. M. Miura and D. T FINEGOOD, A model of $\beta$-cell mass, insulin, and glucose kinetics: Pathways to diabetes,, Journal of Theoretical Biology, 206 (2000), 605. Google Scholar

[43]

Y.-F. Wang, M. Khan and H. A. van den Berg, Interaction of fast and slow dynamics in endocrine control systems with an application to $\beta$-cell dynamics,, Mathematical biosciences, 235 (2012), 8. doi: 10.1016/j.mbs.2011.10.003. Google Scholar

[44]

G. C. Weir and S. Bonner-Weir, Five stages of evolving beta-cell dysfunction during progression to diabetes,, Diabetes, 53 (2004). doi: 10.2337/diabetes.53.suppl_3.S16. Google Scholar

[45]

L. Wu, W. Nicholson, S. M. Knobel, R. J. Steffner, J. M. May, D. W. Piston and A. C. Powers, Oxidative stress is a mediator of glucose toxicity in insulin-secreting pancreatic islet cell lines,, Journal of Biological Chemistry, 279 (2004), 12126. doi: 10.1074/jbc.M307097200. Google Scholar

[46]

Y.-P. Zhou and V. E. Grill, Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle,, Journal of Clinical Investigation, 93 (1994), 870. doi: 10.1172/JCI117042. Google Scholar

show all references

References:
[1]

Statistics about diabetes: American diabetes association, http://www.diabetes.org/diabetes-basics/statistics/,, Accessed: 2014-04-03., (): 2014. Google Scholar

[2]

V. Åberg, A. Thörne, A. Alvestrand and J. Nordenström, Combined hypertriglyceridemic and insulin-glucose clamps for the characterization of substrate oxidation and plasma elimination of a long-chain triglyceride emulsion in healthy men,, Metabolism, 61 (2012), 221. Google Scholar

[3]

J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry,, 5th edition, (2002). Google Scholar

[4]

J. M. Berg, J. L. Tymoczko and L. Stryer, Glycogen breakdown and synthesis are reciprocally regulated,, in Biochemistry, (2002). Google Scholar

[5]

R. N. Bergman, L. S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: Measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose,, Journal of Clinical Investigation, 68 (1981), 1456. doi: 10.1172/JCI110398. Google Scholar

[6]

M. J. Birnbaum, Turning down insulin signaling,, Journal of Clinical Investigation, 108 (2001), 655. doi: 10.1172/JCI200113714. Google Scholar

[7]

M. Bollen, S. Keppens and W. Stalmans, Specific features of glycogen metabolism in the liver,, Biochem. J, 15 (1998), 19. doi: 10.1042/bj3360019. Google Scholar

[8]

L. Bouwens and I. Rooman, Regulation of pancreatic beta-cell mass,, Physiological reviews, 85 (2005), 1255. doi: 10.1152/physrev.00025.2004. Google Scholar

[9]

A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza and P. C. Butler, $\beta$-cell deficit and increased $\beta$-cell apoptosis in humans with type 2 diabetes,, Diabetes, 52 (2003), 102. Google Scholar

[10]

M. R. Castro, Is hyperinsulinemia a form of diabetes?,, , (): 2014. Google Scholar

[11]

C. M. Elks, N. Mariappan, M. Haque, A. Guggilam, D. S. Majid and J. Francis, Chronic nf-$\kappa$b blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in shr,, American Journal of Physiology-Renal Physiology, 296 (2009). Google Scholar

[12]

M. Elks, Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release.,, Endocrinology, 133 (1993), 208. Google Scholar

[13]

P. Felig and J. Wahren, Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man,, Journal of Clinical Investigation, 50 (1971), 1702. doi: 10.1172/JCI106659. Google Scholar

[14]

J. E. Gerich, The genetic basis of type 2 diabetes mellitus: Impaired insulin secretion versus impaired insulin sensitivity,, Endocrine reviews, 19 (1998), 491. Google Scholar

[15]

S. Gremlich, C. Bonny, G. Waeber and B. Thorens, Fatty acids decrease idx-1 expression in rat pancreatic islets and reduce glut2, glucokinase, insulin, and somatostatin levels,, Journal of Biological Chemistry, 272 (1997), 30261. doi: 10.1074/jbc.272.48.30261. Google Scholar

[16]

M. J. Haller, M. A. Atkinson and D. Schatz, Type 1 diabetes mellitus: Etiology, presentation, and management,, Pediatric Clinics of North America, 52 (2005), 1553. doi: 10.1016/j.pcl.2005.07.006. Google Scholar

[17]

M.-T. Huang and R. L. Veech, Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state,, Journal of Clinical Investigation, 81 (1988), 872. doi: 10.1172/JCI113397. Google Scholar

[18]

R. Lupi and S. Del Prato, $\beta$-cell apoptosis in type 2 diabetes: Quantitative and functional consequences,, Diabetes & metabolism, 34 (2008). Google Scholar

[19]

A. Makroglou, J. Li and Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview,, Applied numerical mathematics, 56 (2006), 559. doi: 10.1016/j.apnum.2005.04.023. Google Scholar

[20]

T. M. Mason, T. Goh, V. Tchipashvili, H. Sandhu, N. Gupta, G. F. Lewis and A. Giacca, Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats,, Diabetes, 48 (1999), 524. doi: 10.2337/diabetes.48.3.524. Google Scholar

[21]

D. Mellitus, Diagnosis and classification of diabetes mellitus,, Diabetes care, 28 (2005). Google Scholar

[22]

S. Y. Morris, How insulin and glucagon work,, , (): 2014. Google Scholar

[23]

R. Murray, D. Bender, K. M. Botham, P. J. Kennelly, V. Rodwell and P. A. Weil, Harpers Illustrated Biochemistry 29/E,, McGraw Hill Professional, (2012). Google Scholar

[24]

J. M. Olefsky, Pathogenesis of insulin resistance and hyperglycemia in non-insulin-dependent diabetes mellitus,, The American Journal of Medicine, 79 (1985), 1. doi: 10.1016/S0002-9343(85)80001-2. Google Scholar

[25]

G. Paolisso, A. Gambardella, L. Amato, R. Tortoriello, A. d'Amore, M. Varricchio and F. d'Onofrio, Opposite effects of short-and long-term fatty acid infusion on insulin secretion in healthy subjects,, Diabetologia, 38 (1995), 1295. doi: 10.1007/BF00401761. Google Scholar

[26]

K. F. Petersen and G. I. Shulman, Etiology of insulin resistance,, The American journal of medicine, 119 (2006). doi: 10.1016/j.amjmed.2006.01.009. Google Scholar

[27]

V. Poitout and R. P. Robertson, Minireview: secondary $\beta$-cell failure in type 2 diabetes?a convergence of glucotoxicity and lipotoxicity,, Endocrinology, 143 (2002), 339. Google Scholar

[28]

K. Polonsky, B. Given, L. Hirsch, E. Shapiro, H. Tillil, C. Beebe, J. Galloway, B. Frank, T. Karrison and E. Van Cauter, Quantitative study of insulin secretion and clearance in normal and obese subjects,, Journal of Clinical Investigation, 81 (1988), 435. doi: 10.1172/JCI113338. Google Scholar

[29]

G. M. Reaven, Role of insulin resistance in human disease,, Role of Insulin Resistance in Human Disease, 1 (1992), 91. doi: 10.1007/978-94-011-2700-4_10. Google Scholar

[30]

J. Reece, L. A. Urry, N. Meyers, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B. Jackson and B. N. Cooke, Campbell Biology,, Pearson Higher Education AU, (2011). Google Scholar

[31]

R. P. Robertson, J. Harmon, P. O. Tran, Y. Tanaka and H. Takahashi, Glucose toxicity in $\beta$-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection,, Diabetes, 52 (2003), 581. Google Scholar

[32]

R. P. Robertson, J. Harmon, P. O. T. Tran and V. Poitout, $\beta$-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes,, Diabetes, 53 (2004). Google Scholar

[33]

R. P. Robertson, L. K. Olson and H.-J. Zhang, Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene,, Diabetes, 43 (1994), 1085. Google Scholar

[34]

S. Robin, Expected blood glucose after a high carb meal,, , (): 2014. Google Scholar

[35]

J. Ruhl, How blood sugar control works-and how it stops working,, , (): 2014. Google Scholar

[36]

Y. SAKO and V. E. GRILL, A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and b cell oxidation through a process likely coupled to fatty acid oxidation*,, Endocrinology, 127 (1990), 1580. doi: 10.1210/endo-127-4-1580. Google Scholar

[37]

G. Scheiner, Strike the spike ii." diabetes self-managment,, , (): 2014. Google Scholar

[38]

O. Shaham, R. Wei, T. J. Wang, C. Ricciardi, G. D. Lewis, R. S. Vasan, S. A. Carr, R. Thadhani, R. E. Gerszten and V. K. Mootha, Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity,, Molecular Systems Biology, 4 (2008). doi: 10.1038/msb.2008.50. Google Scholar

[39]

M. C. Stoppler, Hyperglycemia: Facts on symptom, signs and treatment,, , (): 2014. Google Scholar

[40]

M. Stumvoll, A. Mitrakou, W. Pimenta, T. Jenssen, H. Yki-Järvinen, T. Van Haeften, W. Renn and J. Gerich, Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity,, Diabetes care, 23 (2000), 295. doi: 10.2337/diacare.23.3.295. Google Scholar

[41]

O. Tanner, Intensive versus conventional glucose control in critically ill patients,, Journal of the Intensive Care Society, 10 (2009), 216. doi: 10.1177/175114370901000314. Google Scholar

[42]

B. Topp, K. Promislow, G. Devries, R. M. Miura and D. T FINEGOOD, A model of $\beta$-cell mass, insulin, and glucose kinetics: Pathways to diabetes,, Journal of Theoretical Biology, 206 (2000), 605. Google Scholar

[43]

Y.-F. Wang, M. Khan and H. A. van den Berg, Interaction of fast and slow dynamics in endocrine control systems with an application to $\beta$-cell dynamics,, Mathematical biosciences, 235 (2012), 8. doi: 10.1016/j.mbs.2011.10.003. Google Scholar

[44]

G. C. Weir and S. Bonner-Weir, Five stages of evolving beta-cell dysfunction during progression to diabetes,, Diabetes, 53 (2004). doi: 10.2337/diabetes.53.suppl_3.S16. Google Scholar

[45]

L. Wu, W. Nicholson, S. M. Knobel, R. J. Steffner, J. M. May, D. W. Piston and A. C. Powers, Oxidative stress is a mediator of glucose toxicity in insulin-secreting pancreatic islet cell lines,, Journal of Biological Chemistry, 279 (2004), 12126. doi: 10.1074/jbc.M307097200. Google Scholar

[46]

Y.-P. Zhou and V. E. Grill, Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle,, Journal of Clinical Investigation, 93 (1994), 870. doi: 10.1172/JCI117042. Google Scholar

[1]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[2]

Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 83-99. doi: 10.3934/mbe.2016.13.83

[3]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : ⅰ-ⅱ. doi: 10.3934/nhm.20191i

[4]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[5]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[6]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351

[7]

Avner Friedman. PDE problems arising in mathematical biology. Networks & Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691

[8]

D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59

[9]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[10]

Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769

[11]

Jorge Duarte, Cristina Januário, Nuno Martins. A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences & Engineering, 2017, 14 (4) : 821-842. doi: 10.3934/mbe.2017045

[12]

Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 805-821. doi: 10.3934/dcdss.2020046

[13]

Andrew J. Majda, John Harlim, Boris Gershgorin. Mathematical strategies for filtering turbulent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 441-486. doi: 10.3934/dcds.2010.27.441

[14]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[15]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[16]

Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010

[17]

Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377

[18]

Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163

[19]

Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1095-1133. doi: 10.3934/mbe.2013.10.1095

[20]

Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006

[Back to Top]