2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030

Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy

1. 

Instituto Politecnico Nacional, CITEDI, Avenida IPN N 1310, Nueva Tijuana, Tijuana, BC 22435, Mexico

2. 

Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel, 40700

Received  October 2015 Revised  March 2016 Published  October 2016

Understanding the global interaction dynamics between tumor and the immune system plays a key role in the advancement of cancer therapy. Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for the study of the immune system response to combined therapy for bladder cancer with Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . We utilized a mathematical approach for bladder cancer treatment model for derivation of ultimate upper and lower bounds and proving dissipativity property in the sense of Levinson. Furthermore, tumor clearance conditions for BCG treatment of bladder cancer are presented. Our method is based on localization of compact invariant sets and may be exploited for a prediction of the cells populations dynamics involved into the model.
Citation: K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030
References:
[1]

S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer,, Bull. Math. Biol., 69 (2007), 1847. doi: 10.1007/s11538-007-9195-z.

[2]

S. Bunimovich-Mendrazitsky, H. M. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer,, Bull. Math. Biol., 70 (2008), 2055. doi: 10.1007/s11538-008-9344-z.

[3]

S. Bunimovich-Mendrazitsky, S. Halachmi and N. Kronik, Improving Bacillus Calmette Guerin (BCG) immunotherapy for bladder cancer by adding Interleukin-2 (IL-2): A mathematical model,, Math. Med. Biol., 33 (2016), 159. doi: 10.1093/imammb/dqv007.

[4]

S. Bunimovich-Mendrazitsky and Y. Goltser, Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of BCG treatment of bladder cancer,, Math. Biosci. Eng., 8 (2011), 529. doi: 10.3934/mbe.2011.8.529.

[5]

V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, Teubner Wiesbaden, (2005). doi: 10.1007/978-3-322-80055-8.

[6]

D. Kirschner and J. Panetta, Modelling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.

[7]

A. P. Krishchenko, Localization of invariant compact sets of dynamical systems,, Differ. Equ., 41 (2005), 1669. doi: 10.1007/s10625-006-0003-6.

[8]

A. P. Krishchenko and K. E. Starkov, Localization of compact invariant sets of the Lorenz system,, Phys. Lett. A, 353 (2006), 383. doi: 10.1016/j.physleta.2005.12.104.

[9]

A. P. Krishchenko and K. E. Starkov, Localization analysis of compact invariant sets of multi-dimensional nonlinear systems and symmetrical prolongations,, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159. doi: 10.1016/j.cnsns.2009.05.068.

[10]

A. Morales, D. Eidinger and A. W. Bruce, Intracavity Bacillus Calmette-Guérin in the treatment of superficial bladder tumors,, J. Urol., 116 (1976), 180.

[11]

M. R. Owen and J. A. Sherratt, Modelling the macrophage invasion of tumors: Effects on growth and composition,, IMA J. Appl. Math., 15 (1998), 165.

[12]

K. E. Starkov, Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems,, Phys. Lett. A, 375 (2011), 3184. doi: 10.1016/j.physleta.2011.06.064.

[13]

K. E. Starkov, Bounding a domain that contains all compact invariant sets of the Bloch system,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037. doi: 10.1142/S0218127409023457.

[14]

K. E. Starkov, Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator,, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565. doi: 10.1016/j.cnsns.2008.08.005.

[15]

K. E. Starkov and L. N. Coria, Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy,, Nonlinear Anal. Real World Appl., 14 (2013), 1425. doi: 10.1016/j.nonrwa.2012.10.006.

[16]

K. E. Starkov and A. Pogromsky, Global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013). doi: 10.1142/S021812741350020X.

[17]

K. E. Starkov and D. Gamboa, Localization of compact invariant sets and global stability in analysis of one tumor growth model,, Math. Methods Appl. Sci, 37 (2014), 2854. doi: 10.1002/mma.3023.

[18]

J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells,, Bull. Math. Biol., 63 (2001), 731. doi: 10.1006/bulm.2001.0245.

show all references

References:
[1]

S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer,, Bull. Math. Biol., 69 (2007), 1847. doi: 10.1007/s11538-007-9195-z.

[2]

S. Bunimovich-Mendrazitsky, H. M. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer,, Bull. Math. Biol., 70 (2008), 2055. doi: 10.1007/s11538-008-9344-z.

[3]

S. Bunimovich-Mendrazitsky, S. Halachmi and N. Kronik, Improving Bacillus Calmette Guerin (BCG) immunotherapy for bladder cancer by adding Interleukin-2 (IL-2): A mathematical model,, Math. Med. Biol., 33 (2016), 159. doi: 10.1093/imammb/dqv007.

[4]

S. Bunimovich-Mendrazitsky and Y. Goltser, Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of BCG treatment of bladder cancer,, Math. Biosci. Eng., 8 (2011), 529. doi: 10.3934/mbe.2011.8.529.

[5]

V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, Teubner Wiesbaden, (2005). doi: 10.1007/978-3-322-80055-8.

[6]

D. Kirschner and J. Panetta, Modelling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.

[7]

A. P. Krishchenko, Localization of invariant compact sets of dynamical systems,, Differ. Equ., 41 (2005), 1669. doi: 10.1007/s10625-006-0003-6.

[8]

A. P. Krishchenko and K. E. Starkov, Localization of compact invariant sets of the Lorenz system,, Phys. Lett. A, 353 (2006), 383. doi: 10.1016/j.physleta.2005.12.104.

[9]

A. P. Krishchenko and K. E. Starkov, Localization analysis of compact invariant sets of multi-dimensional nonlinear systems and symmetrical prolongations,, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159. doi: 10.1016/j.cnsns.2009.05.068.

[10]

A. Morales, D. Eidinger and A. W. Bruce, Intracavity Bacillus Calmette-Guérin in the treatment of superficial bladder tumors,, J. Urol., 116 (1976), 180.

[11]

M. R. Owen and J. A. Sherratt, Modelling the macrophage invasion of tumors: Effects on growth and composition,, IMA J. Appl. Math., 15 (1998), 165.

[12]

K. E. Starkov, Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems,, Phys. Lett. A, 375 (2011), 3184. doi: 10.1016/j.physleta.2011.06.064.

[13]

K. E. Starkov, Bounding a domain that contains all compact invariant sets of the Bloch system,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037. doi: 10.1142/S0218127409023457.

[14]

K. E. Starkov, Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator,, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565. doi: 10.1016/j.cnsns.2008.08.005.

[15]

K. E. Starkov and L. N. Coria, Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy,, Nonlinear Anal. Real World Appl., 14 (2013), 1425. doi: 10.1016/j.nonrwa.2012.10.006.

[16]

K. E. Starkov and A. Pogromsky, Global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013). doi: 10.1142/S021812741350020X.

[17]

K. E. Starkov and D. Gamboa, Localization of compact invariant sets and global stability in analysis of one tumor growth model,, Math. Methods Appl. Sci, 37 (2014), 2854. doi: 10.1002/mma.3023.

[18]

J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells,, Bull. Math. Biol., 63 (2001), 731. doi: 10.1006/bulm.2001.0245.

[1]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[2]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[3]

Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013

[4]

Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja. Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 145-160. doi: 10.3934/dcdsb.2018009

[5]

Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92.

[6]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

[7]

Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure & Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103

[8]

Alex James, Simon Green, Mike Plank. Modelling the dynamic response of oxygen uptake to exercise. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 361-370. doi: 10.3934/dcdsb.2009.12.361

[9]

M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399

[10]

Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences & Engineering, 2008, 5 (3) : 485-504. doi: 10.3934/mbe.2008.5.485

[11]

Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305

[12]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[13]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[14]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[15]

Jaedal Jung, Ertugrul Taciroglu. A divide-alternate-and-conquer approach for localization and shape identification of multiple scatterers in heterogeneous media using dynamic XFEM. Inverse Problems & Imaging, 2016, 10 (1) : 165-193. doi: 10.3934/ipi.2016.10.165

[16]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[17]

Avner Friedman, Kang-Ling Liao. The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1203-1217. doi: 10.3934/mbe.2015.12.1203

[18]

G.A. Ngwa. Modelling the dynamics of endemic malaria in growing populations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1173-1202. doi: 10.3934/dcdsb.2004.4.1173

[19]

Nils Ackermann, Thomas Bartsch, Petr Kaplický. An invariant set generated by the domain topology for parabolic semiflows with small diffusion. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 613-626. doi: 10.3934/dcds.2007.18.613

[20]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]