September  2016, 11(3): 509-526. doi: 10.3934/nhm.2016007

Evolution of spoon-shaped networks

1. 

Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, Pisa, 56127, Italy

Received  March 2015 Revised  September 2015 Published  August 2016

We consider a regular embedded network composed by two curves, one of them closed, in a convex and smooth domain $\Omega$. The two curves meet only at one point, forming angles of $120$ degrees. The non-closed curve has a fixed end--point on $\partial\Omega$. We study the evolution by curvature of this network. We show that the maximal time of existence is finite and depends only on the area enclosed in the initial loop, if the length of the non-closed curve stays bounded from below during the evolution. Moreover, the closed curve shrinks to a point and the network is asymptotically approaching, after dilations and extraction of a subsequence, a Brakke spoon.
Citation: Alessandra Pluda. Evolution of spoon-shaped networks. Networks & Heterogeneous Media, 2016, 11 (3) : 509-526. doi: 10.3934/nhm.2016007
References:
[1]

U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions,, J. Diff. Geom., 23 (1986), 175.   Google Scholar

[2]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Princeton University Press, (1978).   Google Scholar

[3]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation,, Arch. Rational Mech. Anal., 124 (1993), 355.  doi: 10.1007/BF00375607.  Google Scholar

[4]

X. Chen and J. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277.  doi: 10.1007/s00208-010-0558-7.  Google Scholar

[5]

K. S. Chou and X. P. Zhu, Shortening complete planar curves,, J. Diff. Geom., 50 (1998), 471.   Google Scholar

[6]

M. E. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves,, J. Diff. Geom., 23 (1986), 69.   Google Scholar

[7]

M. A. Grayson, The heat equation shrinks embedded plane curves to round points,, J. Diff. Geom., 26 (1987), 285.   Google Scholar

[8]

R. S. Hamilton, Four-manifolds with positive curvature operator,, J. Diff. Geom., 24 (1986), 153.   Google Scholar

[9]

R. S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane,, in Modern Methods in Complex Analysis (Princeton, 137 (1995), 201.  doi: 10.1016/1053-8127(94)00130-3.  Google Scholar

[10]

G. Huisken, Asymptotic behavior for singularities of the mean curvature flow,, J. Diff. Geom., 31 (1990), 285.   Google Scholar

[11]

G. Huisken, A distance comparison principle for evolving curves,, Asian J. Math., 2 (1998), 127.  doi: 10.4310/AJM.1998.v2.n1.a2.  Google Scholar

[12]

T. Ilmanen, A. Neves and F. Schulze, On short time existence for the planar network flow, preprint,, , ().   Google Scholar

[13]

D. Kinderlehrer and C. Liu, Evolution of grain boundaries,, Math. Models Methods Appl. Sci., 11 (2001), 713.  doi: 10.1142/S0218202501001069.  Google Scholar

[14]

A. Magni and C. Mantegazza, A note on Grayson's theorem,, Rend. Semin. Mat. Univ. Padova, 131 (2014), 263.  doi: 10.4171/RSMUP/131-16.  Google Scholar

[15]

A. Magni, C. Mantegazza and M. Novaga, Motion by curvature of planar networks II,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15 (2016), 117.   Google Scholar

[16]

C. Mantegazza, M. Novaga, A. Pluda and F. Schulze, Evolution of network with multiple junctions,, Preprint, (2015).   Google Scholar

[17]

C. Mantegazza, M. Novaga and V. M. Tortorelli, Motion by curvature of planar networks,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3 (2004), 235.   Google Scholar

[18]

L. Nirenberg, On elliptic partial differential equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 13 (1959), 115.   Google Scholar

show all references

References:
[1]

U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions,, J. Diff. Geom., 23 (1986), 175.   Google Scholar

[2]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Princeton University Press, (1978).   Google Scholar

[3]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation,, Arch. Rational Mech. Anal., 124 (1993), 355.  doi: 10.1007/BF00375607.  Google Scholar

[4]

X. Chen and J. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277.  doi: 10.1007/s00208-010-0558-7.  Google Scholar

[5]

K. S. Chou and X. P. Zhu, Shortening complete planar curves,, J. Diff. Geom., 50 (1998), 471.   Google Scholar

[6]

M. E. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves,, J. Diff. Geom., 23 (1986), 69.   Google Scholar

[7]

M. A. Grayson, The heat equation shrinks embedded plane curves to round points,, J. Diff. Geom., 26 (1987), 285.   Google Scholar

[8]

R. S. Hamilton, Four-manifolds with positive curvature operator,, J. Diff. Geom., 24 (1986), 153.   Google Scholar

[9]

R. S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane,, in Modern Methods in Complex Analysis (Princeton, 137 (1995), 201.  doi: 10.1016/1053-8127(94)00130-3.  Google Scholar

[10]

G. Huisken, Asymptotic behavior for singularities of the mean curvature flow,, J. Diff. Geom., 31 (1990), 285.   Google Scholar

[11]

G. Huisken, A distance comparison principle for evolving curves,, Asian J. Math., 2 (1998), 127.  doi: 10.4310/AJM.1998.v2.n1.a2.  Google Scholar

[12]

T. Ilmanen, A. Neves and F. Schulze, On short time existence for the planar network flow, preprint,, , ().   Google Scholar

[13]

D. Kinderlehrer and C. Liu, Evolution of grain boundaries,, Math. Models Methods Appl. Sci., 11 (2001), 713.  doi: 10.1142/S0218202501001069.  Google Scholar

[14]

A. Magni and C. Mantegazza, A note on Grayson's theorem,, Rend. Semin. Mat. Univ. Padova, 131 (2014), 263.  doi: 10.4171/RSMUP/131-16.  Google Scholar

[15]

A. Magni, C. Mantegazza and M. Novaga, Motion by curvature of planar networks II,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15 (2016), 117.   Google Scholar

[16]

C. Mantegazza, M. Novaga, A. Pluda and F. Schulze, Evolution of network with multiple junctions,, Preprint, (2015).   Google Scholar

[17]

C. Mantegazza, M. Novaga and V. M. Tortorelli, Motion by curvature of planar networks,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3 (2004), 235.   Google Scholar

[18]

L. Nirenberg, On elliptic partial differential equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 13 (1959), 115.   Google Scholar

[1]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[2]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[3]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021065

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[6]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[7]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[8]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[9]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[10]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[13]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[14]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[15]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[16]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]