2016, 10(3): 499-510. doi: 10.3934/amc.2016021

Algebraic structures of MRD codes

1. 

Departamento de Matemáticas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla, Colombia

2. 

Institut für Mathematik, Universität Bayreuth, 95440 Bayreuth

3. 

Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany

4. 

Department of Mathematics, Otto-von-Guericke-University, 39016 Magdeburg

Received  April 2015 Revised  April 2016 Published  August 2016

Based on results in finite geometry we prove the existence of MRD codes in $(\mathbb{F}_q)_{n,n}$ with minimum distance $n$ which are essentially different from Gabidulin codes. The construction results from algebraic structures which are closely related to those of finite fields. Some of the results may be known to experts, but to our knowledge have never been pointed out explicitly in the literature.
Citation: Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021
References:
[1]

J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe,, Math. Z., 60 (1954), 156.

[2]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[3]

R. H. Bruck and R. C. Bose, The construction of translation planes from projectives spaces,, J. Algebra, 1 (1964), 85.

[4]

M. Cordero and G. P. Wene, A survey of finite semifields,, Discrete Math., 208/209 (1999), 125. doi: 10.1016/S0012-365X(99)00068-0.

[5]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Combin. Theory Ser. A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8.

[6]

P. Dembowski, Finite Geometries,, Springer, (1968).

[7]

U. Dempwolff, Semifield planes of order 81,, J. Geom., 89 (): 2008. doi: 10.1007/s00022-008-1995-2.

[8]

E. M. Gabidulin, Theory of codes with maximal rank distance,, Probl. Inform. Transm., 21 (1985), 1.

[9]

E. M. Gabidulin and N. I. Pilipchuk, Symmetric matrices and codes correcting rank errors beyond the $\lfloor \frac{d-1}{2} \rfloor$ bound,, Discrete Appl. Math., 154 (2006), 305. doi: 10.1016/j.dam.2005.03.012.

[10]

L.-K. Hua, A theorem on matrices over a sfield and its applications,, Acta Math. Sinica, 1 (1951), 109.

[11]

M. Johnson, V. Jha and M. Biliotti, Handbook of Finite Translation Planes,, Chapman Hall/CRC, (2007). doi: 10.1201/9781420011142.

[12]

W. M. Kantor, Finite semifields,, in Finite Geometries, (2006), 103.

[13]

N. Knarr, Quasifields of symplectic translation planes,, J. Combin. Theory Ser. A, 116 (2009), 1080. doi: 10.1016/j.jcta.2008.11.012.

[14]

D. E. Knuth, Finite semifields and projective planes,, J. Algebra, 2 (1965), 182.

[15]

M. Lavrauw and O. Polverino, Finite semifields,, in Current Research Topocs in Galois Geometry (eds. J. de Beule and L. Storme), (2011).

[16]

G. Marino and O. Polverino, On isotopisms and strong isotopisms of commutative presemifields,, J. Algebr. Combin., 36 (2012), 247. doi: 10.1007/s10801-011-0334-0.

[17]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198.

[18]

G. Nebe and W. Willems, On self-dual MRD codes,, Adv. Math. Comm., 10 (2016), 633. doi: 10.3934/amc.2016031.

[19]

I. F. Rúa, E. F. Combarro and J. Ranilla, Classification of semifields of order 64,, J. Algebra, 322 (2009), 4011. doi: 10.1016/j.jalgebra.2009.02.020.

[20]

I. F. Rúa, E. F. Combarro and J. Ranilla, Determination of division algebras with 243 elements,, Finite Fields Appl., 18 (2012), 1148.

[21]

K.-U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory,, J. Algebr. Combin., 42 (2015), 635. doi: 10.1007/s10801-015-0595-0.

[22]

R. J. Walker, Determination of division algebras with 32 elements,, Proc. Sympos. Appl. Math., 75 (1962), 83.

[23]

Z.-X. Wan, A proof of the automorphisms of linear groups over a sfield of characteristic 2,, Sci. Sinica, 11 (1962), 1183.

[24]

Z.-X. Wan, Geometry of Matrices,, World Scientific, (1996). doi: 10.1142/9789812830234.

[25]

S. Yang and T. Honold, Good random matrices over finite fields,, Adv. Math. Commun., 6 (2012), 203. doi: 10.3934/amc.2012.6.203.

[26]

H. Zassenhaus, Über endliche Fastkörper,, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 187. doi: 10.1007/BF02940723.

[27]

=, ().

show all references

References:
[1]

J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe,, Math. Z., 60 (1954), 156.

[2]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[3]

R. H. Bruck and R. C. Bose, The construction of translation planes from projectives spaces,, J. Algebra, 1 (1964), 85.

[4]

M. Cordero and G. P. Wene, A survey of finite semifields,, Discrete Math., 208/209 (1999), 125. doi: 10.1016/S0012-365X(99)00068-0.

[5]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Combin. Theory Ser. A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8.

[6]

P. Dembowski, Finite Geometries,, Springer, (1968).

[7]

U. Dempwolff, Semifield planes of order 81,, J. Geom., 89 (): 2008. doi: 10.1007/s00022-008-1995-2.

[8]

E. M. Gabidulin, Theory of codes with maximal rank distance,, Probl. Inform. Transm., 21 (1985), 1.

[9]

E. M. Gabidulin and N. I. Pilipchuk, Symmetric matrices and codes correcting rank errors beyond the $\lfloor \frac{d-1}{2} \rfloor$ bound,, Discrete Appl. Math., 154 (2006), 305. doi: 10.1016/j.dam.2005.03.012.

[10]

L.-K. Hua, A theorem on matrices over a sfield and its applications,, Acta Math. Sinica, 1 (1951), 109.

[11]

M. Johnson, V. Jha and M. Biliotti, Handbook of Finite Translation Planes,, Chapman Hall/CRC, (2007). doi: 10.1201/9781420011142.

[12]

W. M. Kantor, Finite semifields,, in Finite Geometries, (2006), 103.

[13]

N. Knarr, Quasifields of symplectic translation planes,, J. Combin. Theory Ser. A, 116 (2009), 1080. doi: 10.1016/j.jcta.2008.11.012.

[14]

D. E. Knuth, Finite semifields and projective planes,, J. Algebra, 2 (1965), 182.

[15]

M. Lavrauw and O. Polverino, Finite semifields,, in Current Research Topocs in Galois Geometry (eds. J. de Beule and L. Storme), (2011).

[16]

G. Marino and O. Polverino, On isotopisms and strong isotopisms of commutative presemifields,, J. Algebr. Combin., 36 (2012), 247. doi: 10.1007/s10801-011-0334-0.

[17]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198.

[18]

G. Nebe and W. Willems, On self-dual MRD codes,, Adv. Math. Comm., 10 (2016), 633. doi: 10.3934/amc.2016031.

[19]

I. F. Rúa, E. F. Combarro and J. Ranilla, Classification of semifields of order 64,, J. Algebra, 322 (2009), 4011. doi: 10.1016/j.jalgebra.2009.02.020.

[20]

I. F. Rúa, E. F. Combarro and J. Ranilla, Determination of division algebras with 243 elements,, Finite Fields Appl., 18 (2012), 1148.

[21]

K.-U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory,, J. Algebr. Combin., 42 (2015), 635. doi: 10.1007/s10801-015-0595-0.

[22]

R. J. Walker, Determination of division algebras with 32 elements,, Proc. Sympos. Appl. Math., 75 (1962), 83.

[23]

Z.-X. Wan, A proof of the automorphisms of linear groups over a sfield of characteristic 2,, Sci. Sinica, 11 (1962), 1183.

[24]

Z.-X. Wan, Geometry of Matrices,, World Scientific, (1996). doi: 10.1142/9789812830234.

[25]

S. Yang and T. Honold, Good random matrices over finite fields,, Adv. Math. Commun., 6 (2012), 203. doi: 10.3934/amc.2012.6.203.

[26]

H. Zassenhaus, Über endliche Fastkörper,, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 187. doi: 10.1007/BF02940723.

[27]

=, ().

[1]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[2]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[3]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[4]

Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028

[5]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[6]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[7]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[8]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[9]

Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015

[10]

Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273

[11]

Stefan Martignoli, Ruedi Stoop. Phase-locking and Arnold coding in prototypical network topologies. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 145-162. doi: 10.3934/dcdsb.2008.9.145

[12]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[13]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[14]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[15]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[16]

Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005

[17]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[18]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[19]

Simone Göttlich, Stephan Knapp. Semi-Markovian capacities in production network models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3235-3258. doi: 10.3934/dcdsb.2017090

[20]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (12)

[Back to Top]