2016, 10(3): 589-600. doi: 10.3934/amc.2016028

Explicit constructions of some non-Gabidulin linear maximum rank distance codes

1. 

Department of Mathematics & Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

2. 

Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Dumlupnar Bulvar, 06800, Ankara

Received  May 2015 Revised  June 2016 Published  August 2016

We investigate rank metric codes using univariate linearized polynomials and multivariate linearized polynomials together. We examine the construction of maximum rank distance (MRD) codes and the test of equivalence between two codes in the polynomial representation. Using this approach, we present new classes of some non-Gabidulin linear MRD codes.
Citation: Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028
References:
[1]

J. Berson, Linearized polynomial maps over finite fields,, J. Algebra, 399 (2014), 389. doi: 10.1016/j.jalgebra.2013.10.013.

[2]

J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes,, Adv. Math. Commun., 10 (2016), 499. doi: 10.3934/amc.2016021.

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8.

[4]

E. M. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inform. Transm., 21 (1985), 1.

[5]

A.-L. Horlemann-Trautmann and K. Marshall, New criteria for MRD and Gabidulin codes and some rank-metric code constructions,, preprint, ().

[6]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes,, in Proc. Int. Symp. Inf. Theory (ISIT 2005), (2005), 2105.

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997).

[8]

K. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inf. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198.

[9]

O. Ore, On a special class of polynomials,, Trans. Amer. Math. Soc., 35 (1933), 559. doi: 10.2307/1989849.

[10]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().

show all references

References:
[1]

J. Berson, Linearized polynomial maps over finite fields,, J. Algebra, 399 (2014), 389. doi: 10.1016/j.jalgebra.2013.10.013.

[2]

J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes,, Adv. Math. Commun., 10 (2016), 499. doi: 10.3934/amc.2016021.

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8.

[4]

E. M. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inform. Transm., 21 (1985), 1.

[5]

A.-L. Horlemann-Trautmann and K. Marshall, New criteria for MRD and Gabidulin codes and some rank-metric code constructions,, preprint, ().

[6]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes,, in Proc. Int. Symp. Inf. Theory (ISIT 2005), (2005), 2105.

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997).

[8]

K. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inf. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198.

[9]

O. Ore, On a special class of polynomials,, Trans. Amer. Math. Soc., 35 (1933), 559. doi: 10.2307/1989849.

[10]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().

[1]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[2]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[3]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[4]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[5]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[6]

Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147

[7]

Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005

[8]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[9]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[10]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[11]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[12]

Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015

[13]

Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273

[14]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121

[15]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[16]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[17]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[18]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[19]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[20]

Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]