2016, 21(8): 2451-2472. doi: 10.3934/dcdsb.2016055

On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model

1. 

Departamento de Matematica and CMAF-CIO, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

2. 

CMAT and Departamento de Matemática e Aplicações, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Received  July 2015 Revised  June 2016 Published  September 2016

We consider a class of scalar delay differential equations with impulses and satisfying an Yorke-type condition, for which some criteria for the global stability of the zero solution are established. Here, the usual requirements about the impulses are relaxed. The results can be applied to study the stability of other solutions, such as periodic solutions. As an illustration, a very general periodic Lasota-Wazewska model with impulses and multiple time-dependent delays is addressed, and the global attractivity of its positive periodic solution analysed. Our results are discussed within the context of recent literature.
Citation: Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055
References:
[1]

T. Faria, M. C. Gadotti and J. J. Oliveira, Stability results for impulsive functional differential equations with infinite delay,, Nonlinear Anal., 75 (2012), 6570. doi: 10.1016/j.na.2012.07.030.

[2]

K. Gopalsamy and B. G. Zhang, On delay differential equations with impulses,, J. Math. Anal. Appl., 139 (1989), 110. doi: 10.1016/0022-247X(89)90232-1.

[3]

J. R. Graef, C. Qian and P. W. Spikes, Oscillation and global attractivity in a periodic delay equation,, Canad. Math. Bull., 39 (1996), 275. doi: 10.4153/CMB-1996-035-9.

[4]

H.-F. Huo, W.-T. Li and X. Liu, Existence and global attractivity of positive periodic solution of an impulsive delay differential equation,, Appl. Anal., 83 (2004), 1279. doi: 10.1080/00036810410001724599.

[5]

X. Li, X. Lin, D. Jiang and X. Zhang, Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects,, Nonlinear Anal., 62 (2005), 683. doi: 10.1016/j.na.2005.04.005.

[6]

G. Liu, A. Zhao and J. Yan, Existence and global attractivity of unique positive periodic solution for a Lasota-Wazewska model,, Nonlinear Anal., 64 (2006), 1737. doi: 10.1016/j.na.2005.07.022.

[7]

X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations,, Computers Math. Appl., 41 (2001), 903. doi: 10.1016/S0898-1221(00)00328-X.

[8]

X. Liu and G. Ballinger, Existence and continuability of solutions for differential equations with delays and state-dependent impulses,, Nonlinear Anal., 51 (2002), 633. doi: 10.1016/S0362-546X(01)00847-1.

[9]

X. Liu and Y. Takeuchi, Periodicity and global dynamics of an impulsive delay Lasota-Wazewska model,, J. Math. Anal. Appl., 327 (2007), 326. doi: 10.1016/j.jmaa.2006.04.026.

[10]

A. Ouahab, Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay,, Nonlinear Anal., 67 (2007), 1027. doi: 10.1016/j.na.2006.06.033.

[11]

S. H. Saker and J. O. Alzabut, On the impulsive delay hematopoiesis model with periodic coefficients,, Rocky Mountain J. Math., 39 (2009), 1657. doi: 10.1216/RMJ-2009-39-5-1657.

[12]

S. H. Saker and J. O. Alzabut, Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model,, Nonlinear Anal. RWA, 8 (2007), 1029. doi: 10.1016/j.nonrwa.2006.06.001.

[13]

X. H. Tang, Asymptotic behavior of delay differential equations with instantaneously terms,, J. Math. Anal. Appl., 302 (2005), 342. doi: 10.1016/j.jmaa.2003.12.048.

[14]

X. H. Tang and X. Zou, Stability of scalar delay differential equations with dominant delayed terms,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 951. doi: 10.1017/S0308210500002766.

[15]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of red blood cells system,, (Polish) Mat. Stos. (3), 6 (1976), 23.

[16]

J. Yan, Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model,, J. Math. Anal. Appl., 279 (2003), 111. doi: 10.1016/S0022-247X(02)00613-3.

[17]

J. Yan, Stability for impulsive delay differential equations,, Nonlinear Anal., 63 (2005), 66. doi: 10.1016/j.na.2005.05.001.

[18]

J. Yan, A. Zhao and J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems,, Math. Comput. Modelling, 40 (2004), 509. doi: 10.1016/j.mcm.2003.12.011.

[19]

R. Ye, Existence of solutions for impulsive partial neutral functional differential equation with infinite delay,, Nonlinear Anal., 73 (2010), 155. doi: 10.1016/j.na.2010.03.008.

[20]

J. S. Yu, Explicit conditions for stability of nonlinear scalar delay differential equations with impulses,, Nonlinear Anal., 46 (2001), 53. doi: 10.1016/S0362-546X(99)00445-9.

[21]

J. S. Yu and B. G. Zhang, Stability theorem for delay differential equations with impulses,, J. Math. Anal. Appl., 199 (1996), 162. doi: 10.1006/jmaa.1996.0134.

[22]

H. Zhang, L. Chen and J. J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy,, Nonlinear Anal. RWA, 9 (2008), 1714. doi: 10.1016/j.nonrwa.2007.05.004.

[23]

X. Zhang, Stability on nonlinear delay differential equations with impulses,, Nonlinear Anal., 67 (2007), 3003. doi: 10.1016/j.na.2006.09.051.

[24]

A. Zhao and J. Yan, Asymptotic behavior of solutions of impulsive delay differential equations,, J. Math. Anal. Appl., 201 (1996), 943. doi: 10.1006/jmaa.1996.0293.

show all references

References:
[1]

T. Faria, M. C. Gadotti and J. J. Oliveira, Stability results for impulsive functional differential equations with infinite delay,, Nonlinear Anal., 75 (2012), 6570. doi: 10.1016/j.na.2012.07.030.

[2]

K. Gopalsamy and B. G. Zhang, On delay differential equations with impulses,, J. Math. Anal. Appl., 139 (1989), 110. doi: 10.1016/0022-247X(89)90232-1.

[3]

J. R. Graef, C. Qian and P. W. Spikes, Oscillation and global attractivity in a periodic delay equation,, Canad. Math. Bull., 39 (1996), 275. doi: 10.4153/CMB-1996-035-9.

[4]

H.-F. Huo, W.-T. Li and X. Liu, Existence and global attractivity of positive periodic solution of an impulsive delay differential equation,, Appl. Anal., 83 (2004), 1279. doi: 10.1080/00036810410001724599.

[5]

X. Li, X. Lin, D. Jiang and X. Zhang, Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects,, Nonlinear Anal., 62 (2005), 683. doi: 10.1016/j.na.2005.04.005.

[6]

G. Liu, A. Zhao and J. Yan, Existence and global attractivity of unique positive periodic solution for a Lasota-Wazewska model,, Nonlinear Anal., 64 (2006), 1737. doi: 10.1016/j.na.2005.07.022.

[7]

X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations,, Computers Math. Appl., 41 (2001), 903. doi: 10.1016/S0898-1221(00)00328-X.

[8]

X. Liu and G. Ballinger, Existence and continuability of solutions for differential equations with delays and state-dependent impulses,, Nonlinear Anal., 51 (2002), 633. doi: 10.1016/S0362-546X(01)00847-1.

[9]

X. Liu and Y. Takeuchi, Periodicity and global dynamics of an impulsive delay Lasota-Wazewska model,, J. Math. Anal. Appl., 327 (2007), 326. doi: 10.1016/j.jmaa.2006.04.026.

[10]

A. Ouahab, Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay,, Nonlinear Anal., 67 (2007), 1027. doi: 10.1016/j.na.2006.06.033.

[11]

S. H. Saker and J. O. Alzabut, On the impulsive delay hematopoiesis model with periodic coefficients,, Rocky Mountain J. Math., 39 (2009), 1657. doi: 10.1216/RMJ-2009-39-5-1657.

[12]

S. H. Saker and J. O. Alzabut, Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model,, Nonlinear Anal. RWA, 8 (2007), 1029. doi: 10.1016/j.nonrwa.2006.06.001.

[13]

X. H. Tang, Asymptotic behavior of delay differential equations with instantaneously terms,, J. Math. Anal. Appl., 302 (2005), 342. doi: 10.1016/j.jmaa.2003.12.048.

[14]

X. H. Tang and X. Zou, Stability of scalar delay differential equations with dominant delayed terms,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 951. doi: 10.1017/S0308210500002766.

[15]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of red blood cells system,, (Polish) Mat. Stos. (3), 6 (1976), 23.

[16]

J. Yan, Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model,, J. Math. Anal. Appl., 279 (2003), 111. doi: 10.1016/S0022-247X(02)00613-3.

[17]

J. Yan, Stability for impulsive delay differential equations,, Nonlinear Anal., 63 (2005), 66. doi: 10.1016/j.na.2005.05.001.

[18]

J. Yan, A. Zhao and J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems,, Math. Comput. Modelling, 40 (2004), 509. doi: 10.1016/j.mcm.2003.12.011.

[19]

R. Ye, Existence of solutions for impulsive partial neutral functional differential equation with infinite delay,, Nonlinear Anal., 73 (2010), 155. doi: 10.1016/j.na.2010.03.008.

[20]

J. S. Yu, Explicit conditions for stability of nonlinear scalar delay differential equations with impulses,, Nonlinear Anal., 46 (2001), 53. doi: 10.1016/S0362-546X(99)00445-9.

[21]

J. S. Yu and B. G. Zhang, Stability theorem for delay differential equations with impulses,, J. Math. Anal. Appl., 199 (1996), 162. doi: 10.1006/jmaa.1996.0134.

[22]

H. Zhang, L. Chen and J. J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy,, Nonlinear Anal. RWA, 9 (2008), 1714. doi: 10.1016/j.nonrwa.2007.05.004.

[23]

X. Zhang, Stability on nonlinear delay differential equations with impulses,, Nonlinear Anal., 67 (2007), 3003. doi: 10.1016/j.na.2006.09.051.

[24]

A. Zhao and J. Yan, Asymptotic behavior of solutions of impulsive delay differential equations,, J. Math. Anal. Appl., 201 (1996), 943. doi: 10.1006/jmaa.1996.0293.

[1]

Aníbal Coronel, Christopher Maulén, Manuel Pinto, Daniel Sepúlveda. Almost automorphic delayed differential equations and Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1959-1977. doi: 10.3934/dcds.2017083

[2]

Y. Chen, L. Wang. Global attractivity of a circadian pacemaker model in a periodic environment. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 277-288. doi: 10.3934/dcdsb.2005.5.277

[3]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[4]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[5]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[6]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[7]

Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103

[8]

Teresa Faria, Eduardo Liz, José J. Oliveira, Sergei Trofimchuk. On a generalized Yorke condition for scalar delayed population models. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 481-500. doi: 10.3934/dcds.2005.12.481

[9]

G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549

[10]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[13]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[14]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[15]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[16]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[17]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[18]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[19]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[20]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]