• Previous Article
    Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas
  • CPAA Home
  • This Issue
  • Next Article
    On some touchdown behaviors of the generalized MEMS device equation
2016, 15(6): 2401-2445. doi: 10.3934/cpaa.2016042

Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland

2. 

Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Prague 8

Received  March 2016 Revised  July 2016 Published  September 2016

We consider an evolutionary, non-degenerate, symmetric $p$-Laplacian. By symmetric we mean that the full gradient of $p$-Laplacian is replaced by its symmetric part, which causes a breakdown of the Uhlenbeck structure. We derive interior regularity of time derivatives of its local weak solution. To circumvent the space-time growth mismatch, we devise a new local regularity technique of iterations in Nikolskii-Bochner spaces. It is interesting by itself, as it may be modified to provide new regularity results for the full-gradient $p$-Laplacian case with lower-order dependencies. Finally, having our regularity result for time derivatives, we obtain respective regularity of the main part. The Appendix on Nikolskii-Bochner spaces, that includes theorems on their embeddings and interpolations, may be of independent interest.
Citation: Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042
References:
[1]

E. Acerbi, G. Mingione and G. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25. doi: 10.1016/S0294-1449(03)00031-3.

[2]

R. Adams and J. Fournier, Sobolev Spaces,, Elsevier/Academic Press, (2003).

[3]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Glas. Mat. Ser. III, 35 (2000), 161.

[4]

H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf., (). doi: 10.1002/mana.201100157.

[5]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,, Math. Nachr., 186 (1997), 5. doi: 10.1002/mana.3211860102.

[6]

H. Bae and B. Jin, Regularity of non-Newtonian fluids,, J. Math. Fluid Mech., 16 (2014), 225. doi: 10.1007/s00021-013-0149-y.

[7]

H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11 (2009), 233. doi: 10.1007/s00021-008-0257-2.

[8]

H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11 (2009), 258. doi: 10.1007/s00021-008-0258-1.

[9]

H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables,, Nonlinear Anal., 75 (2012), 4346. doi: 10.1016/j.na.2012.03.021.

[10]

H. Beirão da Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173. doi: 10.3934/dcdss.2013.6.1173.

[11]

H. Beirão da Veiga, P. Kaplický and M. Růžička, Boundary regularity of shear thickening flows,, J. Math. Fluid Mech., 13 (2011), 387. doi: 10.1007/s00021-010-0025-y.

[12]

A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm,, Duke Math J., 8 (1961), 301.

[13]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).

[14]

J. Bergh and J. Löfström, Interpolation Spaces: An Introduction,, Springer-Verlag, (1976).

[15]

O. Besov, On some families of functional spaces. Imbedding and extension theorems (Russian),, Dokl. Akad. Nauk SSSR, 126 (1959), 1163.

[16]

O. Besov, V. Il'in and S. Nikol'skii, Integral Representations of Functions, and Embedding Theorems (Russian),, Nauka, (1975).

[17]

E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems,, J. Reine Angew. Math., 357 (1985), 1. doi: 10.1515/crll.1985.357.1.

[18]

B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian),, Mat. Sb. (N. S.), 43 (1957), 451.

[19]

V. Bögelein, F. Duzaar and G. Mingione, The regularity of general parabolic systems with degenerate diffusion,, Mem. Amer. Math. Soc., 221 (2013). doi: 10.1090/S0065-9266-2012-00664-2.

[20]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 1995. doi: 10.1002/mma.1314.

[21]

J. Burczak, Regularity of solutions to nonlinear non-diagonal evolutionary systems,, PhD Thesis, (2015).

[22]

J. Burczak, Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems,, manuscripta math., 144 (2014), 51. doi: 10.1007/s00229-013-0640-z.

[23]

J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian,, preprint: arXiv:1507.05843 [math.AP], ().

[24]

F. Crispo and C. Grisanti, On the existence, uniqueness and $C^{1, \gamma} (\O) \cap W^{2,2} (\O)$ regularity for a class of shear-thinning fluids,, J. Math. Fluid Mech., 10 (2008), 455. doi: 10.1007/s00021-008-0282-1.

[25]

E. DiBenedetto, Degenerate Parabolic Systems,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-0895-2.

[26]

F. Duzaar and G. Mingione, Second order parabolic systems, optimal regularity and singular sets of solutions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705. doi: 10.1016/j.anihpc.2004.10.011.

[27]

F. Duzaar, G. Mingione and K. Steffen, Parabolic Systems with Polynomial Growth and Regularity,, Memoirs A.M.S. 214, (2011). doi: 10.1090/S0065-9266-2011-00614-3.

[28]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motion of generalized Newtonian fluids,, Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1.

[29]

J. Frehse and S. Schwarzacher, On regularity of the time derivative for degenerate parabolic systems,, SIAM J. Math. Anal., 47 (2015), 3917. doi: 10.1137/141000725.

[30]

M. Fuchs and G. Seregin, Global nonlinear evolution problem for generalized Newtonian fluids: local initial regularity of the strong solution,, Comput. Math. Appl., 53 (2007), 509. doi: 10.1016/j.camwa.2006.02.039.

[31]

K. Golovkin, On equivalent normalizations of fractional spaces (Russian),, Trudy Mat. Inst. Steklova, 66 (1962), 364.

[32]

P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications,, J. Math. Pures Appl., 45 (1966), 143.

[33]

B. Jin, On the Caccioppoli inequality of the unsteady Stokes system,, Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215.

[34]

O. John, A. Kufner and S. Fučík, Function Spaces,, Academia, (1977).

[35]

H. Johnen, Inequalities connected with the moduli of smoothness,, Mat. Vest., 24 (1972), 289.

[36]

P. Kaplický, Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions,, Z. Anal. Anwendungen, 24 (2005), 467. doi: 10.4171/ZAA/1251.

[37]

P. Kaplický, Regularity of flow of anisotropic fluid,, J. Math. Fluid Mech., 10 (2008), 71. doi: 10.1007/s00021-006-0217-7.

[38]

P. Kaplický, J. Málek and J Stará, Global-in-time Hoder continuity of the velocity gradients for fluids with shear-dependent viscosities,, NoDEA, 9 (2002), 175. doi: 10.1007/s00030-002-8123-z.

[39]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p \ge 2$,, Adv. Differential Equations, 6 (2001), 257.

[40]

A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles,, J. Math Pures Appl., 9 (1927), 337.

[41]

T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions definded on a general region,, Publ. Res. Inst. Math. Sci., 9 (1974), 325.

[42]

J. Nečas and V. Sverák, On regularity of solutions of nonlinear parabolic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1.

[43]

S. Nikol'skii, Some inequalities for entire functions of finite degree of several variables and their application (Russian),, Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785.

[44]

P. Rabier, Vector-valued Morrey's embedding theorem and Hölder continuity in parabolic problems,, Electron. J. Diff. Equ., 10 (2011), 1.

[45]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, volume 1748 of {Lecture Notes in Mathematics}, (1748). doi: 10.1007/BFb0104029.

[46]

B. Scharf, H. Schmeisser and W. Sickel, Traces of vector-valued Sobolev spaces,, Math. Nachr., 285 (2012), 1082. doi: 10.1002/mana.201100011.

[47]

J. Simon, Sobolev, Besov and Nikol'skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval,, Ann. Mat. Pura Appl., 157 (1990), 117. doi: 10.1007/BF01765315.

[48]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps,, Lectures in Mathematics ETH Zürich, (1996). doi: 10.1007/978-3-0348-9193-6.

[49]

P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity,, Ann. Mat. Pura Appl., 134 (1983), 241. doi: 10.1007/BF01773507.

[50]

H. Triebel, Theory of Function Spaces I,, Birkhäuser Verlag, (1983). doi: 10.1007/978-3-0346-0416-1.

[51]

H. Triebel, Theory of Function Spaces III,, Birkhäuser Verlag, (2006).

[52]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems,, Acta Math., 138 (1977), 219.

[53]

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A,, Springer Verlag, (1990). doi: 10.1007/978-1-4612-0985-0.

[54]

A. Zygmund, Smooth functions,, Duke Math. J., 12 (1945), 47.

show all references

References:
[1]

E. Acerbi, G. Mingione and G. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25. doi: 10.1016/S0294-1449(03)00031-3.

[2]

R. Adams and J. Fournier, Sobolev Spaces,, Elsevier/Academic Press, (2003).

[3]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Glas. Mat. Ser. III, 35 (2000), 161.

[4]

H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf., (). doi: 10.1002/mana.201100157.

[5]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,, Math. Nachr., 186 (1997), 5. doi: 10.1002/mana.3211860102.

[6]

H. Bae and B. Jin, Regularity of non-Newtonian fluids,, J. Math. Fluid Mech., 16 (2014), 225. doi: 10.1007/s00021-013-0149-y.

[7]

H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11 (2009), 233. doi: 10.1007/s00021-008-0257-2.

[8]

H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11 (2009), 258. doi: 10.1007/s00021-008-0258-1.

[9]

H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables,, Nonlinear Anal., 75 (2012), 4346. doi: 10.1016/j.na.2012.03.021.

[10]

H. Beirão da Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173. doi: 10.3934/dcdss.2013.6.1173.

[11]

H. Beirão da Veiga, P. Kaplický and M. Růžička, Boundary regularity of shear thickening flows,, J. Math. Fluid Mech., 13 (2011), 387. doi: 10.1007/s00021-010-0025-y.

[12]

A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm,, Duke Math J., 8 (1961), 301.

[13]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).

[14]

J. Bergh and J. Löfström, Interpolation Spaces: An Introduction,, Springer-Verlag, (1976).

[15]

O. Besov, On some families of functional spaces. Imbedding and extension theorems (Russian),, Dokl. Akad. Nauk SSSR, 126 (1959), 1163.

[16]

O. Besov, V. Il'in and S. Nikol'skii, Integral Representations of Functions, and Embedding Theorems (Russian),, Nauka, (1975).

[17]

E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems,, J. Reine Angew. Math., 357 (1985), 1. doi: 10.1515/crll.1985.357.1.

[18]

B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian),, Mat. Sb. (N. S.), 43 (1957), 451.

[19]

V. Bögelein, F. Duzaar and G. Mingione, The regularity of general parabolic systems with degenerate diffusion,, Mem. Amer. Math. Soc., 221 (2013). doi: 10.1090/S0065-9266-2012-00664-2.

[20]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 1995. doi: 10.1002/mma.1314.

[21]

J. Burczak, Regularity of solutions to nonlinear non-diagonal evolutionary systems,, PhD Thesis, (2015).

[22]

J. Burczak, Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems,, manuscripta math., 144 (2014), 51. doi: 10.1007/s00229-013-0640-z.

[23]

J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian,, preprint: arXiv:1507.05843 [math.AP], ().

[24]

F. Crispo and C. Grisanti, On the existence, uniqueness and $C^{1, \gamma} (\O) \cap W^{2,2} (\O)$ regularity for a class of shear-thinning fluids,, J. Math. Fluid Mech., 10 (2008), 455. doi: 10.1007/s00021-008-0282-1.

[25]

E. DiBenedetto, Degenerate Parabolic Systems,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-0895-2.

[26]

F. Duzaar and G. Mingione, Second order parabolic systems, optimal regularity and singular sets of solutions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705. doi: 10.1016/j.anihpc.2004.10.011.

[27]

F. Duzaar, G. Mingione and K. Steffen, Parabolic Systems with Polynomial Growth and Regularity,, Memoirs A.M.S. 214, (2011). doi: 10.1090/S0065-9266-2011-00614-3.

[28]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motion of generalized Newtonian fluids,, Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1.

[29]

J. Frehse and S. Schwarzacher, On regularity of the time derivative for degenerate parabolic systems,, SIAM J. Math. Anal., 47 (2015), 3917. doi: 10.1137/141000725.

[30]

M. Fuchs and G. Seregin, Global nonlinear evolution problem for generalized Newtonian fluids: local initial regularity of the strong solution,, Comput. Math. Appl., 53 (2007), 509. doi: 10.1016/j.camwa.2006.02.039.

[31]

K. Golovkin, On equivalent normalizations of fractional spaces (Russian),, Trudy Mat. Inst. Steklova, 66 (1962), 364.

[32]

P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications,, J. Math. Pures Appl., 45 (1966), 143.

[33]

B. Jin, On the Caccioppoli inequality of the unsteady Stokes system,, Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215.

[34]

O. John, A. Kufner and S. Fučík, Function Spaces,, Academia, (1977).

[35]

H. Johnen, Inequalities connected with the moduli of smoothness,, Mat. Vest., 24 (1972), 289.

[36]

P. Kaplický, Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions,, Z. Anal. Anwendungen, 24 (2005), 467. doi: 10.4171/ZAA/1251.

[37]

P. Kaplický, Regularity of flow of anisotropic fluid,, J. Math. Fluid Mech., 10 (2008), 71. doi: 10.1007/s00021-006-0217-7.

[38]

P. Kaplický, J. Málek and J Stará, Global-in-time Hoder continuity of the velocity gradients for fluids with shear-dependent viscosities,, NoDEA, 9 (2002), 175. doi: 10.1007/s00030-002-8123-z.

[39]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p \ge 2$,, Adv. Differential Equations, 6 (2001), 257.

[40]

A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles,, J. Math Pures Appl., 9 (1927), 337.

[41]

T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions definded on a general region,, Publ. Res. Inst. Math. Sci., 9 (1974), 325.

[42]

J. Nečas and V. Sverák, On regularity of solutions of nonlinear parabolic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1.

[43]

S. Nikol'skii, Some inequalities for entire functions of finite degree of several variables and their application (Russian),, Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785.

[44]

P. Rabier, Vector-valued Morrey's embedding theorem and Hölder continuity in parabolic problems,, Electron. J. Diff. Equ., 10 (2011), 1.

[45]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, volume 1748 of {Lecture Notes in Mathematics}, (1748). doi: 10.1007/BFb0104029.

[46]

B. Scharf, H. Schmeisser and W. Sickel, Traces of vector-valued Sobolev spaces,, Math. Nachr., 285 (2012), 1082. doi: 10.1002/mana.201100011.

[47]

J. Simon, Sobolev, Besov and Nikol'skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval,, Ann. Mat. Pura Appl., 157 (1990), 117. doi: 10.1007/BF01765315.

[48]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps,, Lectures in Mathematics ETH Zürich, (1996). doi: 10.1007/978-3-0348-9193-6.

[49]

P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity,, Ann. Mat. Pura Appl., 134 (1983), 241. doi: 10.1007/BF01773507.

[50]

H. Triebel, Theory of Function Spaces I,, Birkhäuser Verlag, (1983). doi: 10.1007/978-3-0346-0416-1.

[51]

H. Triebel, Theory of Function Spaces III,, Birkhäuser Verlag, (2006).

[52]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems,, Acta Math., 138 (1977), 219.

[53]

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A,, Springer Verlag, (1990). doi: 10.1007/978-1-4612-0985-0.

[54]

A. Zygmund, Smooth functions,, Duke Math. J., 12 (1945), 47.

[1]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[2]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[3]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[4]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[5]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[6]

Manil T. Mohan, Sivaguru S. Sritharan. New methods for local solvability of quasilinear symmetric hyperbolic systems. Evolution Equations & Control Theory, 2016, 5 (2) : 273-302. doi: 10.3934/eect.2016005

[7]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[8]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[9]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[10]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[11]

Allaberen Ashyralyev. Well-posedness of the modified Crank-Nicholson difference schemes in Bochner spaces. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 29-51. doi: 10.3934/dcdsb.2007.7.29

[12]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[13]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[14]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[15]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[16]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[17]

Bernd Kawohl, Jiří Horák. On the geometry of the $p$-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[18]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[19]

Joanna Balbus, Janusz Mierczyński. Time-averaging and permanence in nonautonomous competitive systems of PDEs via Vance-Coddington estimates. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1407-1425. doi: 10.3934/dcdsb.2012.17.1407

[20]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]