2016, 10: 439-481. doi: 10.3934/jmd.2016.10.439

Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions

1. 

Department of Mathematics, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

Received  March 2015 Revised  July 2016 Published  October 2016

On any smooth compact connected manifold $M$ of dimension $m\geq 2$ admitting a smooth non-trivial circle action $\mathcal S = \left\{S_t\right\}_{t\in \mathbb{S}^1}$ and for every Liouville number $\alpha \in \mathbb{S}^1$ we prove the existence of a $C^\infty$-diffeomorphism $f \in \mathcal{A}_{\alpha} = \overline{\left\{h \circ S_{\alpha} \circ h^{-1} \;:\;h \in \text{Diff}^{\,\,\infty}\left(M,\nu\right)\right\}}^{C^\infty}$ with a good approximation of type $\left(h,h+1\right)$, a maximal spectral type disjoint with its convolutions and a homogeneous spectrum of multiplicity two for the Cartesian square $f\times f$. This answers a question of Fayad and Katok (10,[Problem 7.11]). The proof is based on a quantitative version of the approximation by conjugation-method with explicitly defined conjugation maps and tower elements.
Citation: Philipp Kunde. Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 2016, 10: 439-481. doi: 10.3934/jmd.2016.10.439
References:
[1]

O. N. Ageev, On ergodic transformations with homogeneous spectrum,, J. Dynam. Control Systems, 5 (1999), 149.  doi: 10.1023/A:1021701019156.  Google Scholar

[2]

O. N. Ageev, The homogeneous spectrum problem in ergodic theory,, Invent. Math., 160 (2005), 417.  doi: 10.1007/s00222-004-0422-z.  Google Scholar

[3]

D. V. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms,, Trudy Moskov. Mat. Obšč., 23 (1970), 3.   Google Scholar

[4]

M. Benhenda, Non-standard smooth realization of shifts on the torus,, J. Modern Dynamics, 7 (2013), 329.   Google Scholar

[5]

R. Berndt, Einführung in die symplektische Geometrie,, Friedr. Vieweg & Sohn, (1998).  doi: 10.1007/978-3-322-80215-6.  Google Scholar

[6]

F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity,, Topol. Methods Nonlinear Anal., 1 (1993), 275.   Google Scholar

[7]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaĭ, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[8]

G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications,, Trans. Amer. Math. Soc., 348 (1996), 503.  doi: 10.1090/S0002-9947-96-01501-2.  Google Scholar

[9]

A. Danilenko, A survey on spectral multiplicities of ergodic actions,, Ergodic Theory Dynam. Systems, 33 (2013), 81.  doi: 10.1017/S0143385711000800.  Google Scholar

[10]

B. Fayad and A. Katok, Constructions in elliptic dynamics,, Ergodic Theory Dynam. Systems, 24 (2004), 1477.  doi: 10.1017/S0143385703000798.  Google Scholar

[11]

B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary,, Ann. Sci. École Norm. Sup. (4), 38 (2005), 339.  doi: 10.1016/j.ansens.2005.03.004.  Google Scholar

[12]

B. Fayad, M. Saprykina and A. Windsor, Non-standard smooth realizations of Liouville rotations,, Ergodic Theory Dynam. Systems, 27 (2007), 1803.  doi: 10.1017/S0143385707000314.  Google Scholar

[13]

R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure,, Discrete Contin. Dynam. Systems, 6 (2000), 61.  doi: 10.3934/dcds.2000.6.61.  Google Scholar

[14]

G. R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems,, J. Dynam. Control Systems, 5 (1999), 173.  doi: 10.1023/A:1021726902801.  Google Scholar

[15]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[16]

A. Katok, Bernoulli diffeomorphisms on surfaces,, Ann. of Math. (2), 110 (1979), 529.  doi: 10.2307/1971237.  Google Scholar

[17]

A. Katok, Combinatorical Constructions in Ergodic Theory and Dynamics,, American Mathematical Society, (2003).  doi: 10.1090/ulect/030.  Google Scholar

[18]

J. Kwiatkowski and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II,, Studia Math., 116 (1995), 207.   Google Scholar

[19]

A. Kriegl and P. Michor, The Convenient Setting of Global Analysis,, American Mathematical Society, (1997).  doi: 10.1090/surv/053.  Google Scholar

[20]

A. Katok and A. Stepin, Approximations in ergodic theory,, Russ. Math. Surveys, 22 (1967), 77.  doi: 10.1070/RM1967v022n05ABEH001227.  Google Scholar

[21]

A. Katok and A. Stepin, Metric properties of measure preserving homeomorphisms,, Russ. Math. Surveys, 25 (1970), 191.  doi: 10.1070/RM1970v025n02ABEH003793.  Google Scholar

[22]

M. G. Nadkarni, Spectral Theory of Dynamical Systems,, Birkhäuser Verlag, (1998).  doi: 10.1007/978-3-0348-8841-7.  Google Scholar

[23]

H. Omori, Infinite Dimensional Lie Transformation Groups,, Springer-Verlag, (1974).   Google Scholar

[24]

V. I. Oseledets, An automorphism with simple continuous spectrum not having the group property,, Mat. Zametki, 5 (1969), 323.   Google Scholar

[25]

V. V. Ryzhikov, Transformations having homogeneous spectra,, J. Dynam. Control Systems, 5 (1999), 145.  doi: 10.1023/A:1021748902318.  Google Scholar

[26]

V. V. Ryzhikov, Homogeneous spectrum, disjointness of convolutions and mixing properties of dynamical systems,, Selected Russian Math., 1 (1999), 13.   Google Scholar

[27]

V. V. Ryzhikov, On the spectral and mixing properties of rank-1 constructions in ergodic theory,, Doklady Mathematics, 74 (2006), 545.   Google Scholar

[28]

A. M. Stepin, Properties of spectra of ergodic dynamical systems with locally compact time,, Dokl. Akad. Nauk SSSR, 169 (1966), 773.   Google Scholar

[29]

A. M. Stepin, Spectral properties of generic dynamical systems,, Math. USSR Izv., 29 (1987), 159.  doi: 10.1070/IM1987v029n01ABEH000965.  Google Scholar

show all references

References:
[1]

O. N. Ageev, On ergodic transformations with homogeneous spectrum,, J. Dynam. Control Systems, 5 (1999), 149.  doi: 10.1023/A:1021701019156.  Google Scholar

[2]

O. N. Ageev, The homogeneous spectrum problem in ergodic theory,, Invent. Math., 160 (2005), 417.  doi: 10.1007/s00222-004-0422-z.  Google Scholar

[3]

D. V. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms,, Trudy Moskov. Mat. Obšč., 23 (1970), 3.   Google Scholar

[4]

M. Benhenda, Non-standard smooth realization of shifts on the torus,, J. Modern Dynamics, 7 (2013), 329.   Google Scholar

[5]

R. Berndt, Einführung in die symplektische Geometrie,, Friedr. Vieweg & Sohn, (1998).  doi: 10.1007/978-3-322-80215-6.  Google Scholar

[6]

F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity,, Topol. Methods Nonlinear Anal., 1 (1993), 275.   Google Scholar

[7]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaĭ, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[8]

G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications,, Trans. Amer. Math. Soc., 348 (1996), 503.  doi: 10.1090/S0002-9947-96-01501-2.  Google Scholar

[9]

A. Danilenko, A survey on spectral multiplicities of ergodic actions,, Ergodic Theory Dynam. Systems, 33 (2013), 81.  doi: 10.1017/S0143385711000800.  Google Scholar

[10]

B. Fayad and A. Katok, Constructions in elliptic dynamics,, Ergodic Theory Dynam. Systems, 24 (2004), 1477.  doi: 10.1017/S0143385703000798.  Google Scholar

[11]

B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary,, Ann. Sci. École Norm. Sup. (4), 38 (2005), 339.  doi: 10.1016/j.ansens.2005.03.004.  Google Scholar

[12]

B. Fayad, M. Saprykina and A. Windsor, Non-standard smooth realizations of Liouville rotations,, Ergodic Theory Dynam. Systems, 27 (2007), 1803.  doi: 10.1017/S0143385707000314.  Google Scholar

[13]

R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure,, Discrete Contin. Dynam. Systems, 6 (2000), 61.  doi: 10.3934/dcds.2000.6.61.  Google Scholar

[14]

G. R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems,, J. Dynam. Control Systems, 5 (1999), 173.  doi: 10.1023/A:1021726902801.  Google Scholar

[15]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[16]

A. Katok, Bernoulli diffeomorphisms on surfaces,, Ann. of Math. (2), 110 (1979), 529.  doi: 10.2307/1971237.  Google Scholar

[17]

A. Katok, Combinatorical Constructions in Ergodic Theory and Dynamics,, American Mathematical Society, (2003).  doi: 10.1090/ulect/030.  Google Scholar

[18]

J. Kwiatkowski and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II,, Studia Math., 116 (1995), 207.   Google Scholar

[19]

A. Kriegl and P. Michor, The Convenient Setting of Global Analysis,, American Mathematical Society, (1997).  doi: 10.1090/surv/053.  Google Scholar

[20]

A. Katok and A. Stepin, Approximations in ergodic theory,, Russ. Math. Surveys, 22 (1967), 77.  doi: 10.1070/RM1967v022n05ABEH001227.  Google Scholar

[21]

A. Katok and A. Stepin, Metric properties of measure preserving homeomorphisms,, Russ. Math. Surveys, 25 (1970), 191.  doi: 10.1070/RM1970v025n02ABEH003793.  Google Scholar

[22]

M. G. Nadkarni, Spectral Theory of Dynamical Systems,, Birkhäuser Verlag, (1998).  doi: 10.1007/978-3-0348-8841-7.  Google Scholar

[23]

H. Omori, Infinite Dimensional Lie Transformation Groups,, Springer-Verlag, (1974).   Google Scholar

[24]

V. I. Oseledets, An automorphism with simple continuous spectrum not having the group property,, Mat. Zametki, 5 (1969), 323.   Google Scholar

[25]

V. V. Ryzhikov, Transformations having homogeneous spectra,, J. Dynam. Control Systems, 5 (1999), 145.  doi: 10.1023/A:1021748902318.  Google Scholar

[26]

V. V. Ryzhikov, Homogeneous spectrum, disjointness of convolutions and mixing properties of dynamical systems,, Selected Russian Math., 1 (1999), 13.   Google Scholar

[27]

V. V. Ryzhikov, On the spectral and mixing properties of rank-1 constructions in ergodic theory,, Doklady Mathematics, 74 (2006), 545.   Google Scholar

[28]

A. M. Stepin, Properties of spectra of ergodic dynamical systems with locally compact time,, Dokl. Akad. Nauk SSSR, 169 (1966), 773.   Google Scholar

[29]

A. M. Stepin, Spectral properties of generic dynamical systems,, Math. USSR Izv., 29 (1987), 159.  doi: 10.1070/IM1987v029n01ABEH000965.  Google Scholar

[1]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[2]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021006

[3]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[7]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[8]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[11]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[12]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[13]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[14]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[15]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[16]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[17]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[20]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]