2016, 36(12): 6799-6833. doi: 10.3934/dcds.2016096

Gradient flow structure for McKean-Vlasov equations on discrete spaces

1. 

University of Bonn, Institute for Applied Mathematics, Endenicher Allee 60, 53115 Bonn

2. 

University of California, Berkeley, Evans Hall, Berkeley, California 94720-3840, United States

3. 

Weierstrass Institut, Mohrenstraße 39, 10117 Berlin, Germany

4. 

University of Bonn, Germany, Endenicher Allee 60, 53115 Bonn, Germany

Received  January 2016 Revised  August 2016 Published  October 2016

In this work, we show that a family of non-linear mean-field equations on discrete spaces can be viewed as a gradient flow of a natural free energy functional with respect to a certain metric structure we make explicit. We also prove that this gradient flow structure arises as the limit of the gradient flow structures of a natural sequence of $N$-particle dynamics, as $N$ goes to infinity.
Citation: Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096
References:
[1]

S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage,, Comm. Math. Phys., 307 (2011), 791. doi: 10.1007/s00220-011-1328-4.

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, 2nd edition, (2008). doi: 10.1007/978-3-7643-8722-8.

[3]

L. Ambrosio, G. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure,, Probab. Theory Related Fields, 145 (2009), 517. doi: 10.1007/s00440-008-0177-3.

[4]

P. Billingsley, Probability and Measure,, 2nd edition, (1999).

[5]

F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces,, Probab. Theory Related Fields, 137 (2007), 541. doi: 10.1007/s00440-006-0004-7.

[6]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Limits of relative entropies associated with weakly interacting particle systems,, Electron. J. Probab., 20 (2015). doi: 10.1214/EJP.v20-4003.

[7]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Local stability of Kolmogorov forward equations for finite state nonlinear Markov processes,, Electron. J. Probab., 20 (2015). doi: 10.1214/EJP.v20-4004.

[8]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1989).

[9]

J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates,, Rev. Mat. Iberoamericana, 19 (2003), 971. doi: 10.4171/RMI/376.

[10]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Ration. Mech. Anal., 179 (2006), 217. doi: 10.1007/s00205-005-0386-1.

[11]

P. Cattiaux, A. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case,, Probab. Theory Related Fields, 140 (2008), 19. doi: 10.1007/s00440-007-0056-3.

[12]

P. Dai Pra and F. den Hollander, McKean-Vlasov limit for interacting random processes in random media,, J. Statist. Phys., 84 (1996), 735. doi: 10.1007/BF02179656.

[13]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport,, in Optimal Transportation, (2014), 100. doi: 10.1017/CBO9781107297296.007.

[14]

D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions,, Stochastics, 20 (1987), 247. doi: 10.1080/17442508708833446.

[15]

E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180.

[16]

N. Dirr, V. Laschos and J. Zimmer, Upscaling from particle models to entropic gradient flows,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4726509.

[17]

R. Dobrushin, Vlasov equations,, Functional Analysis and Its Applications, 13 (1979), 48. doi: 10.1007/BF01077243.

[18]

J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between measures,, Calc. Var. Partial Differential Equations, 34 (2009), 193. doi: 10.1007/s00526-008-0182-5.

[19]

M. H. Duong, V. Laschos and M. Renger, Wasserstein gradient flows from large deviations of many-particle limits,, ESAIM Control Optim. Calc. Var., 19 (2013), 1166. doi: 10.1051/cocv/2013049.

[20]

P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations,, Wiley Series in Probability and Statistics: Probability and Statistics, (1997). doi: 10.1002/9781118165904.

[21]

M. Erbar, Gradient flows of the entropy for jump processes,, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 920. doi: 10.1214/12-AIHP537.

[22]

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy,, Arch. Ration. Mech. Anal., 206 (2012), 997. doi: 10.1007/s00205-012-0554-z.

[23]

M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations,, Discrete Contin. Dyn. Syst., 34 (2014), 1355. doi: 10.3934/dcds.2014.34.1355.

[24]

M. Erbar, J. Maas and M. Renger, From large deviations to Wasserstein gradient flows in multiple dimensions,, Electron. Commun. Probab., 20 (2015), 1. doi: 10.1214/ECP.v20-4315.

[25]

M. Fathi, A gradient flow approach to large deviations for diffusion processes,, J. Math. Pures Appl., (2016). doi: 10.1016/j.matpur.2016.03.018.

[26]

M. Fathi and M. Simon, The gradient flow approach to hydrodynamic limits for the simple exclusion process,, In P. Gonçalves and A. J. Soares, (2014), 167.

[27]

N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics,, SIAM J. Math. Anal., 45 (2013), 879. doi: 10.1137/120886315.

[28]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[29]

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, vol. 320 of Grundlehren der Mathematischen Wissenschaften,, Springer-Verlag, (1999). doi: 10.1007/978-3-662-03752-2.

[30]

D. A. Levin, M. J. Luczak and Y. Peres, Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability,, Probab. Theory Related Fields, 146 (2010), 223. doi: 10.1007/s00440-008-0189-z.

[31]

J. Maas, Gradient flows of the entropy for finite Markov chains,, J. Funct. Anal., 261 (2011), 2250. doi: 10.1016/j.jfa.2011.06.009.

[32]

F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes,, Ann. Appl. Probab., 13 (2003), 540. doi: 10.1214/aoap/1050689593.

[33]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines,, J. Chem. Phys., 21 (1953), 1087. doi: 10.1063/1.1699114.

[34]

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains,, Calc. Var. Partial Differential Equations, 48 (2013), 1. doi: 10.1007/s00526-012-0538-8.

[35]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems,, Springer International Publishing, 3 (2016), 187. doi: 10.1007/978-3-319-26883-5_3.

[36]

K. Oelschläger, A martingale approach to the law of large numbers for weakly interacting stochastic processes,, Ann. Probab., 12 (1984), 458. doi: 10.1214/aop/1176993301.

[37]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101. doi: 10.1081/PDE-100002243.

[38]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau,, Comm. Pure Appl. Math., 57 (2004), 1627. doi: 10.1002/cpa.20046.

[39]

A. Schlichting, Macroscopic limits of the Becker-Döring equations via gradient flows,, , ().

[40]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications,, Discrete Contin. Dyn. Syst., 31 (2011), 1427. doi: 10.3934/dcds.2011.31.1427.

[41]

A.-S. Sznitman, Topics in Propagation of Chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, (1464), 165. doi: 10.1007/BFb0085169.

show all references

References:
[1]

S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage,, Comm. Math. Phys., 307 (2011), 791. doi: 10.1007/s00220-011-1328-4.

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, 2nd edition, (2008). doi: 10.1007/978-3-7643-8722-8.

[3]

L. Ambrosio, G. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure,, Probab. Theory Related Fields, 145 (2009), 517. doi: 10.1007/s00440-008-0177-3.

[4]

P. Billingsley, Probability and Measure,, 2nd edition, (1999).

[5]

F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces,, Probab. Theory Related Fields, 137 (2007), 541. doi: 10.1007/s00440-006-0004-7.

[6]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Limits of relative entropies associated with weakly interacting particle systems,, Electron. J. Probab., 20 (2015). doi: 10.1214/EJP.v20-4003.

[7]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Local stability of Kolmogorov forward equations for finite state nonlinear Markov processes,, Electron. J. Probab., 20 (2015). doi: 10.1214/EJP.v20-4004.

[8]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1989).

[9]

J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates,, Rev. Mat. Iberoamericana, 19 (2003), 971. doi: 10.4171/RMI/376.

[10]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Ration. Mech. Anal., 179 (2006), 217. doi: 10.1007/s00205-005-0386-1.

[11]

P. Cattiaux, A. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case,, Probab. Theory Related Fields, 140 (2008), 19. doi: 10.1007/s00440-007-0056-3.

[12]

P. Dai Pra and F. den Hollander, McKean-Vlasov limit for interacting random processes in random media,, J. Statist. Phys., 84 (1996), 735. doi: 10.1007/BF02179656.

[13]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport,, in Optimal Transportation, (2014), 100. doi: 10.1017/CBO9781107297296.007.

[14]

D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions,, Stochastics, 20 (1987), 247. doi: 10.1080/17442508708833446.

[15]

E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180.

[16]

N. Dirr, V. Laschos and J. Zimmer, Upscaling from particle models to entropic gradient flows,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4726509.

[17]

R. Dobrushin, Vlasov equations,, Functional Analysis and Its Applications, 13 (1979), 48. doi: 10.1007/BF01077243.

[18]

J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between measures,, Calc. Var. Partial Differential Equations, 34 (2009), 193. doi: 10.1007/s00526-008-0182-5.

[19]

M. H. Duong, V. Laschos and M. Renger, Wasserstein gradient flows from large deviations of many-particle limits,, ESAIM Control Optim. Calc. Var., 19 (2013), 1166. doi: 10.1051/cocv/2013049.

[20]

P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations,, Wiley Series in Probability and Statistics: Probability and Statistics, (1997). doi: 10.1002/9781118165904.

[21]

M. Erbar, Gradient flows of the entropy for jump processes,, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 920. doi: 10.1214/12-AIHP537.

[22]

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy,, Arch. Ration. Mech. Anal., 206 (2012), 997. doi: 10.1007/s00205-012-0554-z.

[23]

M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations,, Discrete Contin. Dyn. Syst., 34 (2014), 1355. doi: 10.3934/dcds.2014.34.1355.

[24]

M. Erbar, J. Maas and M. Renger, From large deviations to Wasserstein gradient flows in multiple dimensions,, Electron. Commun. Probab., 20 (2015), 1. doi: 10.1214/ECP.v20-4315.

[25]

M. Fathi, A gradient flow approach to large deviations for diffusion processes,, J. Math. Pures Appl., (2016). doi: 10.1016/j.matpur.2016.03.018.

[26]

M. Fathi and M. Simon, The gradient flow approach to hydrodynamic limits for the simple exclusion process,, In P. Gonçalves and A. J. Soares, (2014), 167.

[27]

N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics,, SIAM J. Math. Anal., 45 (2013), 879. doi: 10.1137/120886315.

[28]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[29]

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, vol. 320 of Grundlehren der Mathematischen Wissenschaften,, Springer-Verlag, (1999). doi: 10.1007/978-3-662-03752-2.

[30]

D. A. Levin, M. J. Luczak and Y. Peres, Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability,, Probab. Theory Related Fields, 146 (2010), 223. doi: 10.1007/s00440-008-0189-z.

[31]

J. Maas, Gradient flows of the entropy for finite Markov chains,, J. Funct. Anal., 261 (2011), 2250. doi: 10.1016/j.jfa.2011.06.009.

[32]

F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes,, Ann. Appl. Probab., 13 (2003), 540. doi: 10.1214/aoap/1050689593.

[33]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines,, J. Chem. Phys., 21 (1953), 1087. doi: 10.1063/1.1699114.

[34]

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains,, Calc. Var. Partial Differential Equations, 48 (2013), 1. doi: 10.1007/s00526-012-0538-8.

[35]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems,, Springer International Publishing, 3 (2016), 187. doi: 10.1007/978-3-319-26883-5_3.

[36]

K. Oelschläger, A martingale approach to the law of large numbers for weakly interacting stochastic processes,, Ann. Probab., 12 (1984), 458. doi: 10.1214/aop/1176993301.

[37]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101. doi: 10.1081/PDE-100002243.

[38]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau,, Comm. Pure Appl. Math., 57 (2004), 1627. doi: 10.1002/cpa.20046.

[39]

A. Schlichting, Macroscopic limits of the Becker-Döring equations via gradient flows,, , ().

[40]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications,, Discrete Contin. Dyn. Syst., 31 (2011), 1427. doi: 10.3934/dcds.2011.31.1427.

[41]

A.-S. Sznitman, Topics in Propagation of Chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, (1464), 165. doi: 10.1007/BFb0085169.

[1]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[2]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[3]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[4]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[5]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[6]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2018313

[7]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[8]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[9]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[10]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[11]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[12]

Xia Chen, Tuoc Phan. Free energy in a mean field of Brownian particles. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 747-769. doi: 10.3934/dcds.2019031

[13]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics & Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[14]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[15]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[16]

Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic & Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661

[17]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[18]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[19]

Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. On the $\Gamma$-limit for a non-uniformly bounded sequence of two-phase metric functionals. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 411-426. doi: 10.3934/dcds.2015.35.411

[20]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]