# American Institute of Mathematical Sciences

November  2016, 21(9): 2949-2967. doi: 10.3934/dcdsb.2016081

## Equi-attraction and continuity of attractors for skew-product semiflows

 1 Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla 2 Instituto de Ciências Matemáticas e de Computaçao, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP 3 Instituto de Ciências Matemáticas e de Computacao, Universidade de Săo Paulo-Campus de Săo Carlos, Caixa Postal 668, 13560-970 Săo Carlos SP, Brazil 4 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

Received  July 2015 Revised  November 2015 Published  October 2016

In this paper we prove the equivalence between equi-attraction and continuity of attractors for skew-product semi-flows, and equi-attraction and continuity of uniform and cocycle attractors associated to non-autonomous dynamical systems. To this aim proper notions of equi-attraction have to be introduced in phase spaces where the driving systems depend on a parameter. Results on the upper and lower-semicontinuity of uniform and cocycle attractors are relatively new in the literature, as a deep understanding of the internal structure of these sets is needed, which is generically difficult to obtain. The notion of lifted invariance for uniform attractors allows us to compare the three types of attractors and introduce a common framework in which to study equi-attraction and continuity of attractors. We also include some results on the rate of attraction to the associated attractors.
Citation: Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081
##### References:

show all references

##### References:
 [1] P.E. Kloeden, Pedro Marín-Rubio. Equi-Attraction and the continuous dependence of attractors on time delays. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 581-593. doi: 10.3934/dcdsb.2008.9.581 [2] P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883 [3] Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915 [4] Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 [5] Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261 [6] Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551 [7] Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219 [8] Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142 [9] Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873 [10] Piotr Kalita, Grzegorz Łukaszewicz, Jakub Siemianowski. On relation between attractors for single and multivalued semiflows for a certain class of PDEs. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1199-1227. doi: 10.3934/dcdsb.2019012 [11] Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605 [12] Mirelson M. Freitas, Anderson J. A. Ramos, Baowei Feng, Mauro L. Santos, Helen C. M. Rodrigues. Existence and continuity of global attractors for ternary mixtures of solids. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021196 [13] Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004 [14] Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279 [15] Antônio Luiz Pereira, Severino Horácio da Silva. Continuity of global attractors for a class of non local evolution equations. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1073-1100. doi: 10.3934/dcds.2010.26.1073 [16] Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6267-6284. doi: 10.3934/dcdsb.2021018 [17] Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011 [18] Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290 [19] Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181 [20] Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems, 1996, 2 (1) : 111-120. doi: 10.3934/dcds.1996.2.111

2020 Impact Factor: 1.327