• Previous Article
    Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator
  • JCD Home
  • This Issue
  • Next Article
    Asymptotic invariance and the discretisation of nonautonomous forward attracting sets
2016, 3(2): 163-177. doi: 10.3934/jcd.2016008

Computing coherent sets using the Fokker-Planck equation

1. 

Center for Mathematics, Technische Universität München, 85747 Garching bei München, Germany, Germany

Received  December 2015 Revised  October 2016 Published  December 2016

We perform a numerical approximation of coherent sets in finite-dimensional smooth dynamical systems by computing singular vectors of the transfer operator for a stochastically perturbed flow. This operator is obtained by solution of a discretized Fokker-Planck equation. For numerical implementation, we employ spectral collocation methods and an exponential time differentiation scheme. We experimentally compare our approach with the more classical method by Ulam that is based on discretization of the transfer operator of the unperturbed flow.
Citation: Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008
References:
[1]

R. Banisch and P. Koltai, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, , ().

[2]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition. Dover Publications, (2001).

[3]

S. Cox and P. Matthews, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176 (2002), 430. doi: 10.1006/jcph.2002.6995.

[4]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.

[5]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491. doi: 10.1137/S0036142996313002.

[6]

L. Evans, Partial Differential Equations,, Graduate studies in mathematics, (2010). doi: 10.1090/gsm/019.

[7]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D, 239 (2010), 1527. doi: 10.1016/j.physd.2010.03.009.

[8]

G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507. doi: 10.1016/j.physd.2009.03.002.

[9]

G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010). doi: 10.1063/1.3502450.

[10]

G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250 (2013), 1. doi: 10.1016/j.physd.2013.01.013.

[11]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839. doi: 10.1137/S106482750238911X.

[12]

G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015). doi: 10.1063/1.4927640.

[13]

G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51 (2013), 223. doi: 10.1137/110819986.

[14]

G. Froyland and P. Koltai, Estimating long-term behavior of periodically driven flows without trajectory integration,, , ().

[15]

G. Froyland and K. Padberg-Gehle, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70 (2014), 171. doi: 10.1007/978-1-4939-0419-8_9.

[16]

A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016). doi: 10.1103/PhysRevE.93.063107.

[17]

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248. doi: 10.1016/S0167-2789(00)00199-8.

[18]

G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240 (2011), 574. doi: 10.1016/j.physd.2010.11.010.

[19]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352. doi: 10.1016/S0167-2789(00)00142-1.

[20]

W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49 (2006), 167. doi: 10.1007/3-540-31618-3_11.

[21]

O. Junge, J. E. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2 (2004), 2225. doi: 10.1109/CDC.2004.1430379.

[22]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214. doi: 10.1137/S1064827502410633.

[23]

A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,, Second edition. Applied Mathematical Sciences, (1994). doi: 10.1007/978-1-4612-4286-4.

[24]

T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam's Conjecture,, J. Approx. Theory, 17 (1976), 177. doi: 10.1016/0021-9045(76)90037-X.

[25]

J.-C. Nave, Computational Science and Engineering,, 2008, (2015).

[26]

B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, ().

[27]

C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151 (1999), 146. doi: 10.1006/jcph.1999.6231.

[28]

S. M. Ulam, Problems in Modern Mathematics,, Courier Dover Publications, (2004).

[29]

T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7 (1991), 27. doi: 10.1016/0168-9274(91)90102-6.

show all references

References:
[1]

R. Banisch and P. Koltai, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, , ().

[2]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition. Dover Publications, (2001).

[3]

S. Cox and P. Matthews, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176 (2002), 430. doi: 10.1006/jcph.2002.6995.

[4]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.

[5]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491. doi: 10.1137/S0036142996313002.

[6]

L. Evans, Partial Differential Equations,, Graduate studies in mathematics, (2010). doi: 10.1090/gsm/019.

[7]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D, 239 (2010), 1527. doi: 10.1016/j.physd.2010.03.009.

[8]

G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507. doi: 10.1016/j.physd.2009.03.002.

[9]

G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010). doi: 10.1063/1.3502450.

[10]

G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250 (2013), 1. doi: 10.1016/j.physd.2013.01.013.

[11]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839. doi: 10.1137/S106482750238911X.

[12]

G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015). doi: 10.1063/1.4927640.

[13]

G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51 (2013), 223. doi: 10.1137/110819986.

[14]

G. Froyland and P. Koltai, Estimating long-term behavior of periodically driven flows without trajectory integration,, , ().

[15]

G. Froyland and K. Padberg-Gehle, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70 (2014), 171. doi: 10.1007/978-1-4939-0419-8_9.

[16]

A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016). doi: 10.1103/PhysRevE.93.063107.

[17]

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248. doi: 10.1016/S0167-2789(00)00199-8.

[18]

G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240 (2011), 574. doi: 10.1016/j.physd.2010.11.010.

[19]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352. doi: 10.1016/S0167-2789(00)00142-1.

[20]

W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49 (2006), 167. doi: 10.1007/3-540-31618-3_11.

[21]

O. Junge, J. E. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2 (2004), 2225. doi: 10.1109/CDC.2004.1430379.

[22]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214. doi: 10.1137/S1064827502410633.

[23]

A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,, Second edition. Applied Mathematical Sciences, (1994). doi: 10.1007/978-1-4612-4286-4.

[24]

T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam's Conjecture,, J. Approx. Theory, 17 (1976), 177. doi: 10.1016/0021-9045(76)90037-X.

[25]

J.-C. Nave, Computational Science and Engineering,, 2008, (2015).

[26]

B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, ().

[27]

C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151 (1999), 146. doi: 10.1006/jcph.1999.6231.

[28]

S. M. Ulam, Problems in Modern Mathematics,, Courier Dover Publications, (2004).

[29]

T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7 (1991), 27. doi: 10.1016/0168-9274(91)90102-6.

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[6]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[7]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[8]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[9]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[10]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[11]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[12]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[13]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[14]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[15]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[16]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[17]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[18]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[19]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[20]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]