February  2017, 10(1): 119-139. doi: 10.3934/dcdss.2017007

Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires

1. 

SISSA, Via Bonomea 265, 34136 Trieste, Italy

2. 

University of Sussex, Department of Mathematics, Pevensey 2 Building, Falmer Campus, Brighton BN1 9QH, United Kingdom

3. 

University of Würzburg, Institute of Mathematics, Emil-Fischer-Straße 40, 97074 Würzburg, Germany

Received  January 2015 Revised  July 2015 Published  December 2016

Fund Project: This work was partially supported by the DFG grant SCHL 1706/2-1. The research of G.L. was supported by the ERC grant No. 290888.

In the context of nanowire heterostructures we perform a discrete to continuum limit of the corresponding free energy by means of Γ-convergence techniques. Nearest neighbours are identified by employing the notions of Voronoi diagrams and Delaunay triangulations. The scaling of the nanowire is done in such a way that we perform not only a continuum limit but a dimension reduction simultaneously. The main part of the proof is a discrete geometric rigidity result that we announced in an earlier work and show here in detail for a variety of three-dimensional lattices. We perform the passage from discrete to continuum twice: once for a system that compensates a lattice mismatch between two parts of the heterogeneous nanowire without defects and once for a system that creates dislocations. It turns out that we can verify the experimentally observed fact that the nanowires show dislocations when the radius of the specimen is large.

Citation: Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper. Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 119-139. doi: 10.3934/dcdss.2017007
References:
[1]

R. Alicandro, G. Lazzaroni and M. Palombaro, Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours Preprint SISSA 58/2016/MATE. Google Scholar

[2]

A. BraidesM. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567.  doi: 10.3934/nhm.2007.2.551.  Google Scholar

[3]

E. ErtekinP. A. GreaneyD. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys., 97 (2005), 114325.   Google Scholar

[4]

S. Fanzon, M. Palombaro and M. Ponsiglione, A variational model for dislocations at semi-coherent interfaces, Preprint arXiv: 1512. 03795 (2015). Google Scholar

[5]

L. Flatley and F. Theil, Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218 (2015), 363-416.  doi: 10.1007/s00205-015-0862-1.  Google Scholar

[6]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.  Google Scholar

[7]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born Hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478.  doi: 10.1007/s00332-002-0495-z.  Google Scholar

[8] G. Grosso and G. Pastori Parravicini, Solid State Physics, 2nd edition, Academic Press, Elsevier, Oxford, 2014.   Google Scholar
[9]

P. M. Gruber and J. M. Willis, eds. , Handbook of Convex Geometry, Volume A. , Elsevier Science Publishers B. V. , North-Holland, Amsterdam, 1993. Google Scholar

[10]

K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol., 25 (2010), 024006.   Google Scholar

[11]

G. LazzaroniM. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.  doi: 10.4310/CMS.2015.v13.n5.a3.  Google Scholar

[12]

G. LazzaroniM. Palombaro and A. Schlömerkemper, Dislocations in nanowire heterostructures: From discrete to continuum, Proc. Appl. Math. Mech., 13 (2013), 541-544.   Google Scholar

[13]

S. Müller and M. Palombaro, Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.  doi: 10.1007/s00526-012-0552-x.  Google Scholar

[14]

B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.  doi: 10.1137/050646251.  Google Scholar

[15]

V. SchmidtJ. V. Wittemann and U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388.   Google Scholar

[16]

F. Theil, A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209-236.  doi: 10.1007/s00220-005-1458-7.  Google Scholar

show all references

References:
[1]

R. Alicandro, G. Lazzaroni and M. Palombaro, Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours Preprint SISSA 58/2016/MATE. Google Scholar

[2]

A. BraidesM. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567.  doi: 10.3934/nhm.2007.2.551.  Google Scholar

[3]

E. ErtekinP. A. GreaneyD. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys., 97 (2005), 114325.   Google Scholar

[4]

S. Fanzon, M. Palombaro and M. Ponsiglione, A variational model for dislocations at semi-coherent interfaces, Preprint arXiv: 1512. 03795 (2015). Google Scholar

[5]

L. Flatley and F. Theil, Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218 (2015), 363-416.  doi: 10.1007/s00205-015-0862-1.  Google Scholar

[6]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.  Google Scholar

[7]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born Hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478.  doi: 10.1007/s00332-002-0495-z.  Google Scholar

[8] G. Grosso and G. Pastori Parravicini, Solid State Physics, 2nd edition, Academic Press, Elsevier, Oxford, 2014.   Google Scholar
[9]

P. M. Gruber and J. M. Willis, eds. , Handbook of Convex Geometry, Volume A. , Elsevier Science Publishers B. V. , North-Holland, Amsterdam, 1993. Google Scholar

[10]

K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol., 25 (2010), 024006.   Google Scholar

[11]

G. LazzaroniM. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.  doi: 10.4310/CMS.2015.v13.n5.a3.  Google Scholar

[12]

G. LazzaroniM. Palombaro and A. Schlömerkemper, Dislocations in nanowire heterostructures: From discrete to continuum, Proc. Appl. Math. Mech., 13 (2013), 541-544.   Google Scholar

[13]

S. Müller and M. Palombaro, Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.  doi: 10.1007/s00526-012-0552-x.  Google Scholar

[14]

B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.  doi: 10.1137/050646251.  Google Scholar

[15]

V. SchmidtJ. V. Wittemann and U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388.   Google Scholar

[16]

F. Theil, A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209-236.  doi: 10.1007/s00220-005-1458-7.  Google Scholar

Figure 1.  In the face-centred cubic lattice the nearest-neighbour structure of the atoms provides a subdivision of the space into tetrahedra (A) and octahedra (B). Figure (C) shows a quarter of an octahedron in the same unit cell. Grey dots denote points lying on the hidden facets
Figure 2.  The hexagonal close-packed lattice is associated with a tessellation of tetrahedra and octahedra as the ones in the figure. Only some of the bonds and some of the polyhedra of the pretriangulation are displayed
Figure 3.  The body-centred cubic lattice is associated with a tessellation of irregular tetrahedra as the one in the figure
Figure 4.  Cubic cell in the diamond lattice $\mathcal{L}^{\rm{D}}$. Atoms from the sublattice $\mathcal{L}^{\rm{D}}_1$ are represented in black/grey, while white atoms are from the sublattice $\mathcal{L}^{\rm{D}}_2$. Nearest-neighbour bonds are displayed by solid thick lines. Moreover, the picture shows a tetrahedron from the Delaunay pretriangulation of $\mathcal{L}^{\rm{D}}_1$: its edges (solid and dashed thin lines) correspond to next-to-nearest neighbours in $\mathcal{L}^{\rm{D}}$. A white atom lies at the barycentre of the tetrahedron, which is further divided into four irregular tetrahedra by the bonds between the barycentre and each vertex
Figure 5.  Bonds and triangulation in a honeycomb lattice. The lattice is given by $\mathcal{L}^✡:=\mathcal{L}^✡_1 \cup \mathcal{L}^✡_2$, where $\mathcal{L}^✡_i:={\rm{u}}_i^✡ + \xi_1{\rm{v}}^✡_1+\xi_2{\rm{v}}^✡_2 \colon \ \xi_1,\xi_2 \in\mathbb{Z}\}$, ${\rm{v}}^✡_1:=(1,0)$, ${\rm{v}}^✡_2:=(\frac12,\frac{\sqrt3}2)$, ${\rm{u}}^✡_1:=(0,0)$, ${\rm{u}}^✡_2:=(0,\frac{\sqrt3}3)$. This results into two interpenetrating sublattices $\mathcal{L}^✡_1$ and $\mathcal{L}^✡_2$, both being hexagonal (i.e., equilateral triangular). Atoms from $\mathcal{L}^✡_1$ and $\mathcal{L}^✡_2$ are displayed in different colors in the picture, respectively in black and in white. In the left part of the figure we indicate nearest neighbour (solid) and next-to-nearest neighbour bonds (dashed lines). The right part of the figure shows a possible triangulation, that is the natural triangulation of $\mathcal{L}^✡_1$ enriched by considering the nearest-neighbour bonds between atoms $x\in\mathcal{L}^✡_1$ and $y\in\mathcal{L}^✡_2$. This corresponds to ignoring the bonds between atoms of $\mathcal{L}^✡_2$, cf. Section 2.3
Figure 6.  By cutting a cubic lattice along certain transverse planes, one finds two-dimensional hexagonal Bravais lattices. (A) face-centred; (B) body-centred
Figure 7.  Dislocations in a honeycomb-type lattice. The bonds at the interface are chosen in the following way: First one considers only black atoms and finds a Delaunay pretriangulation, which is then refined to a triangulation (dashed lines); the same is done for white atoms (dotted lines). The dashed and dotted lines thus obtained give the bonds between next-to-nearest neighbours. Finally, each white (resp. black) atom lying inside a triangle formed by three black (resp. white) atoms is connected to the vertices of that triangle by nearest-neighbour bonds (solid lines)
Figure 8.  The tetrahedron $\mathcal S$ and its image $F(\mathcal S)$
Figure 9.  The octahedron $\mathcal O$
Figure 10.  (A) The image of $\mathcal{O}$ through a piece-wise affine map $u$ such that $l_i=1$ for each $i\neq 3$. (B) The projection of $u(\mathcal{O})$ on the plane $p$, where $O=\Pi(Q_1)=\Pi(Q_4)$
[1]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[3]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[4]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[5]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[6]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[7]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[8]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[12]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[17]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[18]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[19]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[20]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (74)
  • HTML views (147)
  • Cited by (1)

[Back to Top]