2017, 37(3): 1183-1200. doi: 10.3934/dcds.2017049

Ergodic properties of folding maps on spheres

1. 

University of Toronto, Department of Mathematics, 40 St. George St., Room 6290, Toronto, ON M5S 2E4, Canada

2. 

University of Chicago, Department of Mathematics, 5734 S. University Avenue, Room 208C, Chicago, IL 60637, USA

* Corresponding author: A. Burchard

Received  May 2016 Revised  November 2016 Published  December 2016

We consider the trajectories of points on $ \mathbb{S}^{d-1} $ under sequences of certain folding maps associated with reflections. The main result characterizes collections of folding maps that produce dense trajectories. The minimal number of maps in such a collection is d+1.

Citation: Almut Burchard, Gregory R. Chambers, Anne Dranovski. Ergodic properties of folding maps on spheres. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1183-1200. doi: 10.3934/dcds.2017049
References:
[1]

A. V. Aho, M. R. Garey, J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput., 1 (1972), 131-137. doi: 10.1137/0201008.

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999. doi: 10.1017/CBO9781107325937.

[3]

A. Baernstein Ⅱ, B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43 (1976), 245-268. doi: 10.1215/S0012-7094-76-04322-2.

[4]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242. doi: 10.2307/2946638.

[5]

Y. Benyamini, Two-point symmetrization, the isoperimetric inequality on the sphere, and some applications, in Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, University of Texas Press, Austin, (1984), 53-76

[6]

F. Brock, A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc., 352 (2000), 1759-1796. doi: 10.1090/S0002-9947-99-02558-1.

[7]

A. Burchard, Rate of convergence of random polarizations, preprint, arXiv: 1108.5500, 2011.

[8]

A. Burchard, M. Fortier, Random polarizations, Adv. Math., 234 (2013), 550-573. doi: 10.1016/j.aim.2012.10.010.

[9]

A. Burchard, M. Schmuckenschläger, Comparison theorems for exit times, Geom. Funct. Anal., 11 (2001), 651-692. doi: 10.1007/PL00001681.

[10]

H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2), 35 (1934), 588-621. doi: 10.2307/1968753.

[11]

J. De Keyser and J. Van Schaftingen, Approximation of symmetrizations by Markov processes, Indiana Univ. Math. J. to appear (2016); preprint, arXiv: 1508.00464

[12]

P. Diaconis, M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, 57 (1981), 159-179. doi: 10.1007/BF00535487.

[13]

J. D. Dixon, The probability of generating the symmetric group, Math. Z., 110 (1969), 199-205. doi: 10.1007/BF01110210.

[14]

H. G. Eggleston, Convexity Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958.

[15]

M. Einsiedler and T. Ward, Ergodic Theory, with a View towards Number Theory Graduate Texts in Mathematics, No. 259, Springer Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2.

[16]

A. A. Felikson, Spherical simplexes that generate discrete reflection groups, Mat. Sb. , 195 (2004), 127-142; translation in Sb. Math. , 195 (2004), 585-598, arXiv: math.MG/0212244. doi: 10.1070/SM2004v195n04ABEH000816.

[17]

A. Goetz, Dynamics of piecewise isometries, Illinois J. Math., 44 (2000), 465-478.

[18]

D. A. Klain, Steiner symmetrization using a finite set of directions, Adv. Appl. Math., 48 (2012), 340-353. doi: 10.1016/j.aam.2011.09.004.

[19]

B. Klartag, Rate of convergence of geometric symmetrizations, Geom. Funct. Anal., 14 (2004), 1322-1338. doi: 10.1007/s00039-004-0493-4.

[20]

N. Levitt, H. J. Sussmann, On controllability by means of two vector fields, SIAM J. Control, 13 (1975), 1271-1281. doi: 10.1137/0313079.

[21]

D. Montgomery, H. Samelson, Transformation groups of spheres, Ann. of Math. (2), 44 (1943), 454-470. doi: 10.2307/1968975.

[22]

C. Morpurgo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J., 114 (2002), 477-553. doi: 10.1215/S0012-7094-02-11433-1.

[23]

Y. Peres, P. Sousi, An isoperimetric inequality for the Wiener sausage, Geom. Funct. Anal., 22 (2012), 1000-1014. doi: 10.1007/s00039-012-0184-5.

[24]

U. Porod, The cut-off phenomenon for random reflections, Ann. Probab., 24 (1996), 74-96. doi: 10.1214/aop/1042644708.

[25]

J. S. Rosenthal, Random rotations: Characters and random walks on SO(N), Ann. Probab., 22 (1994), 398-423. doi: 10.1214/aop/1176988864.

[26]

F. Silva Leite, P. Crouch, Closed forms for the exponential mapping on matrix Lie groups based on Putzer's method, J. Math. Phys., 40 (1999), 3561-3568. doi: 10.1063/1.532908.

[27]

S. R. S. Varadhan, Probability Theory Courant Lecture Notes in Mathematics, vol. 7, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/007.

show all references

References:
[1]

A. V. Aho, M. R. Garey, J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput., 1 (1972), 131-137. doi: 10.1137/0201008.

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999. doi: 10.1017/CBO9781107325937.

[3]

A. Baernstein Ⅱ, B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43 (1976), 245-268. doi: 10.1215/S0012-7094-76-04322-2.

[4]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242. doi: 10.2307/2946638.

[5]

Y. Benyamini, Two-point symmetrization, the isoperimetric inequality on the sphere, and some applications, in Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, University of Texas Press, Austin, (1984), 53-76

[6]

F. Brock, A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc., 352 (2000), 1759-1796. doi: 10.1090/S0002-9947-99-02558-1.

[7]

A. Burchard, Rate of convergence of random polarizations, preprint, arXiv: 1108.5500, 2011.

[8]

A. Burchard, M. Fortier, Random polarizations, Adv. Math., 234 (2013), 550-573. doi: 10.1016/j.aim.2012.10.010.

[9]

A. Burchard, M. Schmuckenschläger, Comparison theorems for exit times, Geom. Funct. Anal., 11 (2001), 651-692. doi: 10.1007/PL00001681.

[10]

H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2), 35 (1934), 588-621. doi: 10.2307/1968753.

[11]

J. De Keyser and J. Van Schaftingen, Approximation of symmetrizations by Markov processes, Indiana Univ. Math. J. to appear (2016); preprint, arXiv: 1508.00464

[12]

P. Diaconis, M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, 57 (1981), 159-179. doi: 10.1007/BF00535487.

[13]

J. D. Dixon, The probability of generating the symmetric group, Math. Z., 110 (1969), 199-205. doi: 10.1007/BF01110210.

[14]

H. G. Eggleston, Convexity Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958.

[15]

M. Einsiedler and T. Ward, Ergodic Theory, with a View towards Number Theory Graduate Texts in Mathematics, No. 259, Springer Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2.

[16]

A. A. Felikson, Spherical simplexes that generate discrete reflection groups, Mat. Sb. , 195 (2004), 127-142; translation in Sb. Math. , 195 (2004), 585-598, arXiv: math.MG/0212244. doi: 10.1070/SM2004v195n04ABEH000816.

[17]

A. Goetz, Dynamics of piecewise isometries, Illinois J. Math., 44 (2000), 465-478.

[18]

D. A. Klain, Steiner symmetrization using a finite set of directions, Adv. Appl. Math., 48 (2012), 340-353. doi: 10.1016/j.aam.2011.09.004.

[19]

B. Klartag, Rate of convergence of geometric symmetrizations, Geom. Funct. Anal., 14 (2004), 1322-1338. doi: 10.1007/s00039-004-0493-4.

[20]

N. Levitt, H. J. Sussmann, On controllability by means of two vector fields, SIAM J. Control, 13 (1975), 1271-1281. doi: 10.1137/0313079.

[21]

D. Montgomery, H. Samelson, Transformation groups of spheres, Ann. of Math. (2), 44 (1943), 454-470. doi: 10.2307/1968975.

[22]

C. Morpurgo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J., 114 (2002), 477-553. doi: 10.1215/S0012-7094-02-11433-1.

[23]

Y. Peres, P. Sousi, An isoperimetric inequality for the Wiener sausage, Geom. Funct. Anal., 22 (2012), 1000-1014. doi: 10.1007/s00039-012-0184-5.

[24]

U. Porod, The cut-off phenomenon for random reflections, Ann. Probab., 24 (1996), 74-96. doi: 10.1214/aop/1042644708.

[25]

J. S. Rosenthal, Random rotations: Characters and random walks on SO(N), Ann. Probab., 22 (1994), 398-423. doi: 10.1214/aop/1176988864.

[26]

F. Silva Leite, P. Crouch, Closed forms for the exponential mapping on matrix Lie groups based on Putzer's method, J. Math. Phys., 40 (1999), 3561-3568. doi: 10.1063/1.532908.

[27]

S. R. S. Varadhan, Probability Theory Courant Lecture Notes in Mathematics, vol. 7, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/007.

[1]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[2]

Wen-Chiao Cheng. Two-point pre-image entropy. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 107-119. doi: 10.3934/dcds.2007.17.107

[3]

Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127

[4]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[5]

Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022

[6]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[7]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[8]

Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133

[9]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[10]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[11]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[12]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[13]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[14]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155

[15]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[16]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[17]

George W. Patrick, Tyler Helmuth. Two rolling disks or spheres. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 129-140. doi: 10.3934/dcdss.2010.3.129

[18]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[19]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[20]

Colin Little. Deterministically driven random walks in a random environment on $\mathbb{Z}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5555-5578. doi: 10.3934/dcds.2016044

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (1)
  • Cited by (0)

[Back to Top]