March  2017, 37(3): 1425-1436. doi: 10.3934/dcds.2017059

Multiple periodic solutions of Hamiltonian systems confined in a box

1. 

Dipartimento di Matematica e Geoscienze, Universitá degli Studi di Trieste, P.le Europa 1, Ⅰ-34127 Trieste, Italy

2. 

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Universitá Politecnica delle Marche, Via Brecce Bianche 12, Ⅰ-60131 Ancona, Italy

* Corresponding author: Alessandro Fonda

Received  June 2015 Revised  October 2016 Published  December 2016

Fund Project: The authors were partially supported by INdAM-GNAMPA.

We consider a nonautonomous Hamiltonian system, $T$-periodic in time, possibly defined on a bounded space region, the boundary of which consists of singularity points which can never be attained. Assuming that the system has an interior equilibrium point, we prove the existence of infinitely many $T$-periodic solutions, by the use of a generalized version of the Poincaré-Birkhoff theorem.

Citation: Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059
References:
[1]

A. Boscaggin and R. Ortega, Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc., 157 (2014), 279-296.  doi: 10.1017/S0305004114000310.  Google Scholar

[2]

A. Castro and A. C. Lazer, On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital., 18 (1981), 733-742.   Google Scholar

[3]

T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[4]

A. FondaR. Manasevich and F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.  doi: 10.1137/0524074.  Google Scholar

[5]

A. Fonda and A. Sfecci, Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differential Integral Equations, 25 (2012), 993-1010.   Google Scholar

[6]

A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 260 (2016), 2150-2162.  doi: 10.1016/j.jde.2015.09.056.  Google Scholar

[7]

A. Fonda and A. J. Ureña, A higher dimensional Poincaré Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, online first. doi: 10.1016/j.anihpc.2016.04.002.  Google Scholar

[8]

S. Fučík and V. Lovicar, Periodic solutions of the equation $x"(t)+g(x(t))=p(t)$, Časopis Pěst. Mat., 100 (1975), 160-175.   Google Scholar

[9]

Ph. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations, 26 (1977), 37-53.  doi: 10.1016/0022-0396(77)90097-3.  Google Scholar

[10]

H. Jacobowitz, Periodic solutions of $x"+f(x, t)=0$ via the Poincaré-Birkhoff theorem, J. Differential Equations, 20 (1976), 37-52.  doi: 10.1016/0022-0396(76)90094-2.  Google Scholar

[11]

G. R. Morris, An infinite class of periodic solutions of $x"+2x^3=p(t)$, Proc. Cambridge Philos. Soc., 61 (1965), 157-164.  doi: 10.1017/S0305004100038743.  Google Scholar

[12]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343-352.  doi: 10.1137/0513027.  Google Scholar

[13]

A. Sfecci, Positive periodic solutions for planar differential systems with repulsive singularities on the axes, J. Math. Anal. Appl., 415 (2014), 110-120.  doi: 10.1016/j.jmaa.2013.12.068.  Google Scholar

show all references

References:
[1]

A. Boscaggin and R. Ortega, Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc., 157 (2014), 279-296.  doi: 10.1017/S0305004114000310.  Google Scholar

[2]

A. Castro and A. C. Lazer, On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital., 18 (1981), 733-742.   Google Scholar

[3]

T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[4]

A. FondaR. Manasevich and F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.  doi: 10.1137/0524074.  Google Scholar

[5]

A. Fonda and A. Sfecci, Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differential Integral Equations, 25 (2012), 993-1010.   Google Scholar

[6]

A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 260 (2016), 2150-2162.  doi: 10.1016/j.jde.2015.09.056.  Google Scholar

[7]

A. Fonda and A. J. Ureña, A higher dimensional Poincaré Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, online first. doi: 10.1016/j.anihpc.2016.04.002.  Google Scholar

[8]

S. Fučík and V. Lovicar, Periodic solutions of the equation $x"(t)+g(x(t))=p(t)$, Časopis Pěst. Mat., 100 (1975), 160-175.   Google Scholar

[9]

Ph. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations, 26 (1977), 37-53.  doi: 10.1016/0022-0396(77)90097-3.  Google Scholar

[10]

H. Jacobowitz, Periodic solutions of $x"+f(x, t)=0$ via the Poincaré-Birkhoff theorem, J. Differential Equations, 20 (1976), 37-52.  doi: 10.1016/0022-0396(76)90094-2.  Google Scholar

[11]

G. R. Morris, An infinite class of periodic solutions of $x"+2x^3=p(t)$, Proc. Cambridge Philos. Soc., 61 (1965), 157-164.  doi: 10.1017/S0305004100038743.  Google Scholar

[12]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343-352.  doi: 10.1137/0513027.  Google Scholar

[13]

A. Sfecci, Positive periodic solutions for planar differential systems with repulsive singularities on the axes, J. Math. Anal. Appl., 415 (2014), 110-120.  doi: 10.1016/j.jmaa.2013.12.068.  Google Scholar

Figure 1.  The regions where we estimate the angular velocity of the solutions, in the three cases (a), (b) and (c)
Figure 2.  The construction of the first lap of the guiding curve, outside the rectangle $\mathcal{R}(p_2)$, using the level curves of the energy functions
[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[3]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[4]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[5]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[6]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[7]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[8]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[9]

Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021041

[10]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[13]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[14]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[15]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[16]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[17]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[18]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[19]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[20]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (114)
  • HTML views (46)
  • Cited by (3)

Other articles
by authors

[Back to Top]