April 2017, 37(4): 1841-1856. doi: 10.3934/dcds.2017077

Local criteria for blowup in two-dimensional chemotaxis models

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

2. 

Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-956 Warsaw, Poland

* Corresponding author: Piotr Biler

Received  January 2015 Revised  November 2016 Published  December 2016

We consider two-dimensional versions of the Keller-Segel model for the chemotaxis with either classical (Brownian) or fractional (anomalous) diffusion. Criteria for blowup of solutions in terms of suitable Morrey spaces norms are derived. Moreover, the impact of the consumption term on the global-in-time existence of solutions is analyzed for the classical Keller-Segel system.

Citation: Piotr Biler, Tomasz Cieślak, Grzegorz Karch, Jacek Zienkiewicz. Local criteria for blowup in two-dimensional chemotaxis models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1841-1856. doi: 10.3934/dcds.2017077
References:
[1]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181-205.

[2]

P. BilerI. Guerra and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, Comm. Pure Appl. Analysis, 14 (2015), 2117-2126. doi: 10.3934/cpaa.2015.14.2117.

[3]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262. doi: 10.1007/s00028-009-0048-0.

[4]

P. BilerG. Karch and P. Laurençot, Blowup of solutions to adiffusive aggregation model, Nonlinearity, 22 (2009), 1559-1568. doi: 10.1088/0951-7715/22/7/003.

[5]

P. BilerG. Karch and J. Zienkiewicz, Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems, Nonlinearity, 28 (2015), 4369-4387. doi: 10.1088/0951-7715/28/12/4369.

[6]

P. Biler and W. A. Woyczyński, Global and exploding solutions of nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869. doi: 10.1137/S0036139996313447.

[7]

P. Biler and J. Zienkiewicz, Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data, Bull. Polish Acad. Sci. Mathematics, 63 (2015), 41-51. doi: 10.4064/ba63-1-6.

[8]

P. BilerJ. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp.

[9]

Y. GigaT. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104 (1988), 223-250. doi: 10.1007/BF00281355.

[10]

G. Karch and K. Suzuki, Blow-up versus global existence of solutions to aggregation equations, Appl. Math. (Warsaw), 38 (2011), 243-258. doi: 10.4064/am38-3-1.

[11]

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. Evol. Equ., 8 (2008), 353-378. doi: 10.1007/s00028-008-0375-6.

[12]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differ. Integral Equ., 16 (2003), 427-452.

[13]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Diff. Eq., 18 (2013), 1189-1208.

[14]

D. Li and J. L. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703. doi: 10.1007/s00220-008-0669-0.

[15]

D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. Math., 220 (2009), 1717-1738. doi: 10.1016/j.aim.2008.10.016.

[16]

D. LiJ. L. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332. doi: 10.4171/RMI/602.

[17]

T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37 (2000), 721-733.

[18]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Ineq. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J. , 1970.

[20]

Y. SugiyamaM. Yamamoto and K. Kato, Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space, J. Diff. Eq., 258 (2015), 2983-3010. doi: 10.1016/j.jde.2014.12.033.

show all references

References:
[1]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181-205.

[2]

P. BilerI. Guerra and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, Comm. Pure Appl. Analysis, 14 (2015), 2117-2126. doi: 10.3934/cpaa.2015.14.2117.

[3]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262. doi: 10.1007/s00028-009-0048-0.

[4]

P. BilerG. Karch and P. Laurençot, Blowup of solutions to adiffusive aggregation model, Nonlinearity, 22 (2009), 1559-1568. doi: 10.1088/0951-7715/22/7/003.

[5]

P. BilerG. Karch and J. Zienkiewicz, Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems, Nonlinearity, 28 (2015), 4369-4387. doi: 10.1088/0951-7715/28/12/4369.

[6]

P. Biler and W. A. Woyczyński, Global and exploding solutions of nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869. doi: 10.1137/S0036139996313447.

[7]

P. Biler and J. Zienkiewicz, Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data, Bull. Polish Acad. Sci. Mathematics, 63 (2015), 41-51. doi: 10.4064/ba63-1-6.

[8]

P. BilerJ. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp.

[9]

Y. GigaT. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104 (1988), 223-250. doi: 10.1007/BF00281355.

[10]

G. Karch and K. Suzuki, Blow-up versus global existence of solutions to aggregation equations, Appl. Math. (Warsaw), 38 (2011), 243-258. doi: 10.4064/am38-3-1.

[11]

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. Evol. Equ., 8 (2008), 353-378. doi: 10.1007/s00028-008-0375-6.

[12]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differ. Integral Equ., 16 (2003), 427-452.

[13]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Diff. Eq., 18 (2013), 1189-1208.

[14]

D. Li and J. L. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703. doi: 10.1007/s00220-008-0669-0.

[15]

D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. Math., 220 (2009), 1717-1738. doi: 10.1016/j.aim.2008.10.016.

[16]

D. LiJ. L. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332. doi: 10.4171/RMI/602.

[17]

T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37 (2000), 721-733.

[18]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Ineq. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J. , 1970.

[20]

Y. SugiyamaM. Yamamoto and K. Kato, Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space, J. Diff. Eq., 258 (2015), 2983-3010. doi: 10.1016/j.jde.2014.12.033.

[1]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[2]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[3]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[4]

Jiashan Zheng, Yifu Wang. A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 669-686. doi: 10.3934/dcdsb.2017032

[5]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[6]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[7]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[8]

Dong Li, Xiaoyi Zhang. Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1591-1606. doi: 10.3934/cpaa.2010.9.1591

[9]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[10]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271

[11]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018212

[12]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[13]

Qunying Zhang, Zhigui Lin. Blowup, global fast and slow solutions to a parabolic system with double fronts free boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 429-444. doi: 10.3934/dcdsb.2012.17.429

[14]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553

[15]

Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737

[16]

Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395

[17]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[18]

Andrei Korobeinikov. Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1095-1103. doi: 10.3934/dcdsb.2010.14.1095

[19]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[20]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (17)
  • HTML views (4)
  • Cited by (1)

[Back to Top]